Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Overvoltage and Transient Protection for DC/DC Power Modules

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    Littelfuse Releases TMR Switches with Ultra-Low Power Magnetic Sensing

    Skeleton Opens SuperBattery Factory in Finland 

    Kyocera Releases Ultra-Compact Low Voltage Clock Oscillators

    Murata Expands High Rel NTC Thermistors in Compact 0603M Size

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Wk 45 Electronics Supply Chain Digest

    Transformer Safety IEC 61558 Standard

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Overvoltage and Transient Protection for DC/DC Power Modules

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    Littelfuse Releases TMR Switches with Ultra-Low Power Magnetic Sensing

    Skeleton Opens SuperBattery Factory in Finland 

    Kyocera Releases Ultra-Compact Low Voltage Clock Oscillators

    Murata Expands High Rel NTC Thermistors in Compact 0603M Size

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Wk 45 Electronics Supply Chain Digest

    Transformer Safety IEC 61558 Standard

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

ADI hits 500W with switched capacitor power converter

28.7.2017
Reading Time: 3 mins read
A A

source: Electronics Weekly news

Analogue Devices has managed to create a 500W switched-capacitor power chip for fixed ratio power conversion at up to 72V and 99% efficiency.

RelatedPosts

Overvoltage and Transient Protection for DC/DC Power Modules

Choosing the Right Capacitor: The Importance of Accurate Measurements

Littelfuse Releases TMR Switches with Ultra-Low Power Magnetic Sensing

Power density up to 4,000W/in3 is claimed.

The main application foreseen for the chip, the LTC7820, is 48V non-isolated dc bus conversion, although it is capable of up, down and inverting conversion at a variety of ratios. An example (see diagram below) is a 50A 54 to 9V (6:1) converter peaking at 98% efficiency at 20A.

“Two LTC7820 IC’s can be cascaded for a 4:1 step-down ratio,” said ADI. “For even higher step-down ratios, such as a 6:1, the Dickson converter topology is recommended and is ideal for 54V input to a 9V outputs, requiring only a single LTC7820. ”

LTC7820 54 to 9V converter

6:1 down conversion at up to 98% efficiency.

At least four external n-channel mosfets are required, for which the chip includes four powerful (1.1Ω) gate drivers. Vin max for divide-by-two is 72V, while for doubling and inversion it is 36V. Minimum operating voltage is 6V. An separate power pin allows the chip to be powered from the stepped-down output, or other available sources up to 40V, reducing power dissipation and improving efficiency. Switching frequency range is 100kHz to 1MHz. Other features include: soft-start, input current sensing and protection for: over-current, short-circuit, over-voltage and under-voltage. Package is 4 x 5mm QFN-28, and it operates across -40 to 125°C.

LTC7820 pcb

“It stops switching and pulls the /Fault pin low when a fault condition occurs,” said ADI. “An on-board timer can be set for appropriate re-start/re-try times.”

 

Electronics Weekly contacted the LTC7820 team at Analog Devices to find out more about this novel device.

For example with low-impedance switches connecting capacitors, how are huge current impulses avoided?

It transpires that, before switching starts, the chip pre-charges the power transfer capacitors. For example, in a divide-by-two application, the flying capacitor bank is alternately switched in series and in parallel with the output capacitor bank, so the circuit pre-charges them both to half the input voltage, with the two capacitor banks equal within, say, 500mV or 1V. The actual window is programmable.  According to the engineers, they did a lot of bench work to ensure the scheme works whatever the input voltage and whatever the initial imbalance. For it to work, the load on the output has to be small (<50mA), which can be achieved either by shutting down the downstream dc-dc converter, or with an external output disconnect mosfet. A pin on the chip is available to control either of these options.

Another option is to start switching with no voltage on the input, and then ramp up the input voltage, using a hot-swap controller, for example. This approach has to be used for the 6:1 converter above as pre-charge is not available. An LTC4260 hot-swap controller will work from 8 to 80V, it was pointed out. In this situation, the LTC7820 still does over-voltage and under-voltage detection, and for shut-down the hot-swap controller can be used. A note on the 6:1 converter, is that it is more efficient – at ~97% – than cascading stages to get the same result.

Why was the chip designed in the first place?

Simply for size, and efficiency, said the team. It comes out 50% smaller than a magnetic-based isolated dc-dc brick converter (although isolation is not available with the switched capacitor option) and dissipates less heat.

What about RFI?

Apparently, all four switches are soft-switched, and the voltage-equalising pre-charge means “there is a current impulse, but the voltage difference is so small you don’t see much of an impulse,” Electronics Weekly was told. And “it is not like a buck converter, there no high-voltage ringing”.

Are the capacitors special?

No, they are low-ESR 1210 (2.5 x 3.5mm) ceramic caps: six off 10µF 50V.

And is there anything that the team was pleased with?LTC7820 three diode drive

Yes, the top three mosfets get their high-side drives fed through a simple three-diode arrangement (right). “We use simplest elegant way – three diodes. Nobody else has done that, so we patented architecture.”

 

Related

Recent Posts

Choosing the Right Capacitor: The Importance of Accurate Measurements

12.11.2025
37

Littelfuse Releases TMR Switches with Ultra-Low Power Magnetic Sensing

12.11.2025
6

Skeleton Opens SuperBattery Factory in Finland 

12.11.2025
14

Murata Expands High Rel NTC Thermistors in Compact 0603M Size

12.11.2025
7

ESR of Capacitors, Measurements and Applications

7.11.2025
95

3-Phase EMI Filter Design, Simulation, Calculation and Test

6.11.2025
75

Molex Releases Industry-First Quad-Row Board-to-Board Connectors with EMI Shields

6.11.2025
17

Smoltek CNF-MIM Capacitors Pass 1,000h Reliability Test

6.11.2025
14

Capacitor Lead Times: October 2025

6.11.2025
90

Upcoming Events

Dec 2
December 2 @ 12:00 - December 4 @ 14:15 CET

Microwave Packaging Technology

Dec 9
December 9 @ 12:00 - December 11 @ 14:15 EST

Space and Military Standards for Hybrids and RF Microwave Modules

Dec 10
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version