Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Exxelia 4-Terminal Safety Capacitors Compliant with NF F 62-102 Railway Standard

    Wk 43 Electronics Supply Chain Digest

    Samsung Releases Automotive Molded 2220 1kV C0G MLCC

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    VINATech Offers Smallest 100µF Al-Hybrid Capacitor

    Vishay Unveils SMD 1200V PTC Thermistors in Compact Size

    Power Inductors Future: Minimal Losses and Compact Designs

    Bourns Unveils Automotive 3 Watt Gate Driver Transformer

    Murata Opens EMC Test Lab in Nuremberg to Enhance Automotive Support

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Exxelia 4-Terminal Safety Capacitors Compliant with NF F 62-102 Railway Standard

    Wk 43 Electronics Supply Chain Digest

    Samsung Releases Automotive Molded 2220 1kV C0G MLCC

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    VINATech Offers Smallest 100µF Al-Hybrid Capacitor

    Vishay Unveils SMD 1200V PTC Thermistors in Compact Size

    Power Inductors Future: Minimal Losses and Compact Designs

    Bourns Unveils Automotive 3 Watt Gate Driver Transformer

    Murata Opens EMC Test Lab in Nuremberg to Enhance Automotive Support

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Applications of Exciter Discharge Resistors

6.11.2017
Reading Time: 4 mins read
A A

source: AZO Materials news

An exciter in a synchronous generator is used to deliver the DC supply to the electromagnetic field winding which is mounted on the generator’s rotor. An appropriate means to discharge the stored energy in the field coil should be available in order to prevent damage that is being sustained to excitation systems during shut down.

Metrosil® silicon carbide varistors have offered a reliable solution for exciter discharge applications for many years and they are being employed in many OEMs in world flagship power projects.

Transients may be produced in excitation systems when the voltage supplied to the field coil is removed, causing a quick reduction in current with time. The energy stored in the coil attempts to maintain the level of the current by producing a large back EMF, which may be many times larger than the supply voltage and may sufficiently be larger to damage other components in the system if uncontrolled.

A technique for controlling the level of the back EMF is to dissipate the current / energy stored in the coil into a suitable load, comprising of either a resistor or a varistor such as a Metrosil. The coil serves as a current source that discharges with time into the load during a discharge event. Then, the voltage produced across the load can be controlled and this voltage is in proportion to the resistance of the load and the current that flows through the load.

RelatedPosts

Exxelia 4-Terminal Safety Capacitors Compliant with NF F 62-102 Railway Standard

Wk 43 Electronics Supply Chain Digest

Samsung Releases Automotive Molded 2220 1kV C0G MLCC

Discharge time characteristics

Discharge time characteristics for different discharge resistors.

3 Gorges dam, Hubei province

3 Gorges dam, Hubei Province, China. The hydro power station uses Metrosil exciter discharge varistors.

Advantages of Metrosils in Exciter Discharge Systems

Metrosil offers a high-speed solution to the discharge of excitation systems. This is due to the degree of non-linearity in the V-I characteristics of the discs.

In addition to providing short discharge times, Metrosil can also be employed in high energy applications, because the discs may be matched easily. This ‘matching’ describes how the difference in the electrical properties of the discs establishes the sharing of energy and current within a Metrosil.

If the discs are not matched appropriately in a unit, it may cause uneven current and energy distributions in the unit and limit the rating of the unit or probably lead to failure. Problems in matching with highly non-linear varistors limits their utilization to low energy applications.

Metrosil combines the energy absorption capability and the ideal characteristics of non-linearity for exciter discharge applications.

An unspaced Metrosil unit

An unspaced Metrosil unit as used in a switched static exciter discharge system.

Customized Solutions

For medium to large exciter discharge applications, it is normal to switch in the exciter discharge system at the same time as switching out the supply voltage. This can be attained through a field breaker or a thyristor crowbar control system. This technique is widely employed in static excitation systems.

switched exciter discharge circuit

Typical arrangement of a switched exciter discharge circuit.

The user defines the following parameters of the system in order to develop a customized unit for an exciter discharge application:

  • Maximum discharge current from the field coil
  • Required protection voltage under discharge conditions
  • Energy stored in the field coil

Considerations for the protection voltage and energy to be dissipated must also be made regarding the three-phase short-circuit currents, which can be up to three times the level of the maximum discharge current.

A suitable unit may then be defined by the Metrosil engineers. Many units employ 150 mm diameter discs, which are coupled in series and parallel arrangements, based on the necessary electrical parameters. The number of discs and their thickness is dependent on the application details.

Metrosil exciter discharge units

Metrosil exciter discharge units arranged in parallel in a large hydro power system.

Alternative Exciter Discharge Systems

Customized units suitable for brushless and permanently connected exciter discharge systems – as employed on smaller synchronous generators – can be provided. A wider range of parameters should be considered in these applications, including:

  • The mechanical stability of the unit
  • Leakage current considerations
  • Power dissipation under normal operating conditions

Metrosils installed on a generator with a brushless excitation system

Metrosils installed on a generator with a brushless excitation system.

spaced Metrosil unit

A spaced Metrosil unit as used in a permanently connected static exciter discharge system.

Metrosil unit

Large static excitation system showing Metrosil unit mounted from the cabinet ceiling.

Related

Recent Posts

Exxelia 4-Terminal Safety Capacitors Compliant with NF F 62-102 Railway Standard

27.10.2025
5

VINATech Offers Smallest 100µF Al-Hybrid Capacitor

23.10.2025
33

Vishay Unveils SMD 1200V PTC Thermistors in Compact Size

23.10.2025
7

Bourns Unveils Automotive 3 Watt Gate Driver Transformer

22.10.2025
8

Stackpole Introduces Automotive Thick Film Wide Termination Chip Resistors

20.10.2025
14

Bourns Release Automotive 4-Terminal Shunt Resistors

17.10.2025
23

Bourns Releases High Inductance Common Mode Choke

16.10.2025
21

Vishay Releases Automotive TO-220 Case 50W Thick Film Power Resistor

16.10.2025
18

High Energy Density Polymer Film Capacitors via Molecular and Interfacial Design

15.10.2025
26

Bourns Releases High Clearance and Creepage 1500VDC Power Transformer

15.10.2025
25

Upcoming Events

Oct 28
8:00 - 15:00 CET

Power Up Your Design: SN6507 and the Ready-to-Use Development Kit

Oct 30
11:00 - 12:00 CET

Space Ceramic Capacitors with Flexible Testing

Nov 4
10:00 - 11:00 PST

Design and Stability Analysis of GaN Power Amplifiers using Advanced Simulation Tools

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version