Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Samsung Electro-Mechanics High Capacitance MLCCs for ADAS SoCs

    Murata Expands its Automotive Common Mode Choke Coils to 150C and High Current Capability

    Bourns Releases New Current Transformer

    Skeleton Releases GrapheneGPU to Reduce AI Energy Consumption by 44% and Boosts Power by 40%

    VINATech Expands Aluminum Capacitor Portfolio with Acquisition of Enesol

    binder Offers Wide Range of M12 Panel Mount Connectors

    Bourns Releases New Shielded Power Inductors for DDR5

    Supercapacitors Benefits in Industrial Valve Fail-Safe Control Systems

    Wk 21 Electronics Supply Chain Digest

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Samsung Electro-Mechanics High Capacitance MLCCs for ADAS SoCs

    Murata Expands its Automotive Common Mode Choke Coils to 150C and High Current Capability

    Bourns Releases New Current Transformer

    Skeleton Releases GrapheneGPU to Reduce AI Energy Consumption by 44% and Boosts Power by 40%

    VINATech Expands Aluminum Capacitor Portfolio with Acquisition of Enesol

    binder Offers Wide Range of M12 Panel Mount Connectors

    Bourns Releases New Shielded Power Inductors for DDR5

    Supercapacitors Benefits in Industrial Valve Fail-Safe Control Systems

    Wk 21 Electronics Supply Chain Digest

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

AVX Releases Industry’s Lowest-Profile Tantalum Capacitor

3.4.2019
Reading Time: 2 mins read
A A

Source: AVX news

Measuring just 0.5mm high, the new “I” case capacitor is rated for 10μF & 6.3V, & is ideal for use in a wide variety of embedded, medical, industrial, handheld, & wearable electronics
FOUNTAIN INN, S.C. (April 2, 2019) – AVX Corporation, a leading manufacturer and supplier of advanced electronic components and interconnect, sensor, control, and antenna solutions, has extended its TACmicrochip® Series with the lowest-profile 3216-footprint tantalum capacitor currently available on the market.

RelatedPosts

Samsung Electro-Mechanics High Capacitance MLCCs for ADAS SoCs

Murata Expands its Automotive Common Mode Choke Coils to 150C and High Current Capability

Bourns Releases New Current Transformer

Measuring just 0.5mm high, the first new “I” case capacitor (EIA Metric 3216-05) is rated for 10μF and 6.3V, but will be followed by future code releases to further extend the offering. The full line of TACmicrochip capacitors, which has also offered the industry’s lowest-profile 1206-06 tantalum capacitors since early 2015, is currently available in 11 case sizes with footprints spanning 1005 to 3528, heights ranging from 0.5–1.5mm, capacitance values spanning 0.10–150μF, and voltage ratings spanning 2–25V.

In addition to exhibiting high capacitance in an extremely low profile package designed to contribute to overall space and weight reductions in end products, the new 3216-05 “I” case TACmicrochip capacitors also deliver all of the standard benefits of tantalum technology, including: inherent immunity to piezoelectric noise and higher stability, reliability, and temperature performance than comparable MLCCs.

Capable of being embedded in 0.8mm-thick PCBs or designed into the latest generation of extremely thin handheld devices, TACmicrochip capacitors are ideal for use in a wide variety of medical applications, including hearing aids and other non-life-support devices, as well as in audio and power amplifier modules, embedded electronics applications, including near field communication (NFC) systems and smart cards, and as coupling/decoupling capacitors in industrial, handheld, and wearable electronics.

“Market demand for smaller and lighter electronic products remains consistent and, despite regular component innovation and the on-chip integration of many components, also remains challenging for design engineers,” said Mitch Weaver, a member of the technical staff at AVX.

“Discrete passive components still occupy a majority of board space in PCB designs, so we are now penetrating the PCB with a new generation of embeddable components, like our new 3216-05 TACmicrochip capacitor, that allow engineers to reliably achieve the small, thin, mechanically robust, and electrically stable designs that next-generation applications demands.”

Manufactured using a tantalum wafer process to achieve the high levels of mechanical tolerance required for ultra miniature devices, TACmicrochip capacitors feature an enhanced internal construction that eliminates the space-consuming elements of conventional molded J-leaded tantalum capacitors, including the anode wire, lead frame, and the need for larger wall thicknesses. Rated for use in temperatures spanning -55°C to +125°C, the series is generally supplied with tin over nickel terminations, but gold over nickel options are available as well.

For more information about AVX’s TACmicrochip® tantalum capacitors, please visit click on the product button below to access the product datasheet, AVX’s Polymer, Tantalum, and Niobium Oxide Capacitors Catalog, technical information including safety and packaging information, relevant technical papers, and modeling software. For immediate availability, please visit Digi-Key Electronics, Mouser Electronics and TTI, Inc.

Related

Recent Posts

Samsung Electro-Mechanics High Capacitance MLCCs for ADAS SoCs

30.5.2025
7

Murata Expands its Automotive Common Mode Choke Coils to 150C and High Current Capability

29.5.2025
7

Bourns Releases New Current Transformer

29.5.2025
10

Skeleton Releases GrapheneGPU to Reduce AI Energy Consumption by 44% and Boosts Power by 40%

29.5.2025
26

VINATech Expands Aluminum Capacitor Portfolio with Acquisition of Enesol

28.5.2025
48

Bourns Releases New Shielded Power Inductors for DDR5

29.5.2025
20

Supercapacitors Benefits in Industrial Valve Fail-Safe Control Systems

26.5.2025
27

Samsung Electro-Mechanics Releases High-Capacitance MLCCs for AI Server Applications

21.5.2025
54

Würth Elektronik Introduces LTspice Models for ESD Products

21.5.2025
45

Capacitor Ripple Current Testing: A Design Consideration

21.5.2025
66

Upcoming Events

Jun 4
11:00 - 12:00 CEST

Würth Elektronik PCB Production in Asia

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Filter Q Factor Explained

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version