Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Top 10 Connector Vendors by Product Type

    Bourns Releases High‑Q Air Coil Inductors for RF Aplications

    CMSE 2026 Announces Call for Presentations on High-Reliability Military and Space Electronics

    ESA Call for Papers 6th Space Passive Component Days – SPCD 2026

    Würth Elektronik Offers Halogen‑Free EMC Gaskets for Displays and Housings

    Component Distribution Supply Chain January 2026

    Binder Unveils M8 Flange Solder Connectors for Flexible Cabling

    Power Electronics Tools for Passives and Magnetic Designs

    Modelithics Releases Component Model Library for SIMULIA CST Studio Suite

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Top 10 Connector Vendors by Product Type

    Bourns Releases High‑Q Air Coil Inductors for RF Aplications

    CMSE 2026 Announces Call for Presentations on High-Reliability Military and Space Electronics

    ESA Call for Papers 6th Space Passive Component Days – SPCD 2026

    Würth Elektronik Offers Halogen‑Free EMC Gaskets for Displays and Housings

    Component Distribution Supply Chain January 2026

    Binder Unveils M8 Flange Solder Connectors for Flexible Cabling

    Power Electronics Tools for Passives and Magnetic Designs

    Modelithics Releases Component Model Library for SIMULIA CST Studio Suite

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Capacitor Ripple Current Testing: A Design Consideration

21.5.2025
Reading Time: 6 mins read
A A

This article written by Vincent Mao, Joe Hock, Caleb Winfrey  KYOCERA-AVX Corporation delves into capacitor ripple current evaluation and testing as an increasingly relevant test to complement design considerations.

The world is shifting towards electrification, with electric vehicles (EVs), renewable energy, and smaller, more powerful, yet efficient system-on-chips (SOCs) emerging as key components.

RelatedPosts

Miniaturization of MLCCs and Electrolytics, KAVX Tech Chat

Conductive Polymer Capacitor Market and Design‑In Guide to 2035

Kyocera Releases Ultra-Compact Low Voltage Clock Oscillators

This shift is driven by the growing concern about signal and power integrity across various environments. The ripple current test is commonly used to assess device performance up to 20°C above room temperature.

This overview focuses on the test setups employed to cover three ESR tiers (low, medium, and high) for applications spanning signal integrity to microwave/RF. We present initial results, procedures for data collection and analysis, and considerations for performance impacts associated with mounted parts. Additionally, we discuss ongoing challenges in this field.

Introduction:

In the evolving landscape of electrification—spanning electric vehicles (EVs), renewable energy, and advanced system-on-chips (SoCs)—ripple current has emerged as a critical factor affecting both signal and power integrity. Traditionally relevant in CPU design, ripple current now significantly impacts industries like automotive electronics. This document explores ripple current testing as an essential complement to design considerations, focusing on its relevance in assessing performance under varied environmental conditions and applications.

Key Points:

  1. Ripple Current Significance: Ripple current affects heat generation in capacitors due to equivalent series resistance (ESR) and has become increasingly relevant beyond traditional computing applications.
  2. Test Setup: Involves a combination of signal generators, power amplifiers, impedance matching components, and thermal monitoring apparatus.
  3. Capacitor Types: The study analyzes NP0, X7R, and Tantalum capacitors, each with unique ESR characteristics influencing ripple current tolerance.
  4. Data Collection & Analysis: Encompasses impedance characterization, progressive voltage application, and thermal monitoring to determine ripple current limits.
  5. Design Implications: Provides insights into optimizing power delivery and ensuring component reliability across various environments.

Extended Summary:

The increasing prevalence of embedded systems and the shift towards electrification underscore the growing importance of ripple current in electronic design. Ripple current, the AC component superimposed on a DC supply, affects the thermal performance and reliability of capacitors due to its relationship with ESR. This document details a comprehensive ripple current test designed to evaluate capacitor performance across diverse applications, from RF/microwave systems to automotive electronics.

The ripple current test setup is sophisticated, incorporating function generators, power amplifiers, impedance matching devices, and thermal imaging equipment to assess both unmounted and mounted device configurations. These setups are tailored to accommodate different ESR tiers and frequency ranges, extending up to 1 GHz for high-frequency applications.

Figure 1. Block diagram of the ripple current test apparatus for low frequency ranges up to 12 MHz.
Figure 2. Block diagram of the ripple current test apparatus for high frequency ranges up to 1 GHz.

Three capacitor types—NP0, X7R MLCC capacitors, and Tantalum capacitors were studied. NP0 capacitors, known for minimal ESR and temperature stability, support high ripple currents, making them ideal for high-frequency applications. X7R capacitors offer stable performance over a broad temperature range and exhibit moderate ESR, suitable for general-purpose applications. Tantalum capacitors, with higher ESR, demonstrate self-healing properties and are robust under high ripple current conditions, beneficial for automotive applications.

Figure 3. Capacitance vs. ripple current data for X7R parts for 100 kHz, 500 kHz, 1000 kHz, and 5000 kHz frequencies.
Figure 5. Capacitance vs. ripple current data for tantalum parts for 100 kHz frequency at 45°C baseline temperature.
Figure 4. Capacitance vs. ripple current data for NP0 parts for 100 kHz, 500 kHz, 1000 kHz, and 5000 kHz frequencies.
Figure 6. Max voltage and current plots for a high capacitor value NP0 part with a 630V rating.

The data collection process involved impedance and ESR characterization using precision analyzers, followed by progressive voltage application to observe thermal responses. Data analysis revealed trends correlating capacitance, frequency, and ripple current tolerances. Notably, lower ESR corresponds with higher ripple current capabilities. The study identified the need for ongoing data collection to refine predictive models, particularly for NP0 and Tantalum capacitors.

Future modifications aim to enhance test setups for higher frequency data capture and minimize measurement discrepancies. Improved models will support design decisions in EV charging systems, power-efficient circuits, and high-frequency applications, ensuring component reliability and performance across diverse operational environments.

Conclusion:

Ripple current testing is vital for modern electronic design, providing critical insights into component behavior under dynamic conditions. By understanding the interplay between ripple current, ESR, and capacitance across various capacitor types, designers can optimize electronic systems for durability, efficiency, and reliability. Ongoing research and data refinement will continue to enhance these insights, supporting the development of robust, future-ready electronic solutions.

read the full paper:

KAVX-Ripple-Current-Increasingly-Relevant-TestDownload

Related

Source: KYOCERA AVX

Recent Posts

CMSE 2026 Announces Call for Presentations on High-Reliability Military and Space Electronics

28.1.2026
18

ESA Call for Papers 6th Space Passive Component Days – SPCD 2026

28.1.2026
17

Würth Elektronik Offers Halogen‑Free EMC Gaskets for Displays and Housings

28.1.2026
14

Binder Unveils M8 Flange Solder Connectors for Flexible Cabling

28.1.2026
12

Power Electronics Tools for Passives and Magnetic Designs

27.1.2026
37

Exxelia Publishes Micropen White Papers for Printed Electronics

26.1.2026
28

Stackpole Releases AlN High‑Power Thick Film Chip Resistors

26.1.2026
17

Samsung Q4 2025 Results: MLCC focus for AI, Server and Automotive

26.1.2026
50

Würth Elektronik Developed a Custom Transformer for Active Hand Orthosis

26.1.2026
35

Upcoming Events

Feb 24
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

Mar 3
16:00 - 17:00 CET

Cybersecurity at the Eleventh Hour – from RED to CRA – Information and Discussion

Mar 21
All day

PSMA Capacitor Workshop 2026

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How Metal Prices Are Driving Passive Component Price Hikes

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • Degradation of Capacitors and its Failure Mechanisms

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version