Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Introduces High Current 80VDC Board-Mount EMI Filters

    Bourns Releases High Heat Tolerant TO-227 Thick Film Resistor

    TDK Increases Current Ratings of Automotive Thin-Film Power Inductors

    Sumida Announces New DC Common Mode Choke Coil Series

    KYOCERA AVX Releases New 3dB Hybrid Couplers

    SCHURTER Unveils High Voltage Fuses for EV Applications

    YAGEO Releases First to Market 750V Aluminum Capacitors

    binder Introduces M9 Compact Circular Connector

    Smolteks CNF-MIM Capacitors Meet Thermal and Voltage Stability Industry Requirements

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Introduces High Current 80VDC Board-Mount EMI Filters

    Bourns Releases High Heat Tolerant TO-227 Thick Film Resistor

    TDK Increases Current Ratings of Automotive Thin-Film Power Inductors

    Sumida Announces New DC Common Mode Choke Coil Series

    KYOCERA AVX Releases New 3dB Hybrid Couplers

    SCHURTER Unveils High Voltage Fuses for EV Applications

    YAGEO Releases First to Market 750V Aluminum Capacitors

    binder Introduces M9 Compact Circular Connector

    Smolteks CNF-MIM Capacitors Meet Thermal and Voltage Stability Industry Requirements

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Capacitors in Fusion Energy Experiments 

7.11.2024
Reading Time: 3 mins read
A A

This article based on Knowles Precision Devices blog discusses the role of capacitors in future fusion energy sources.

Companies across the world are engaged in fusion research; some are large national and international labs while others are start-ups looking for lower-cost alternatives to traditional fusion techniques.

RelatedPosts

Learn How Supercapacitors Enhance Power System in Knowles eBook

Role of High-Q Ceramic Filters to Overcome GNSS Jamming

Knowles Extends Range and Performance of C0G MLCC Capacitors

Their work is built on the premise that fused light nuclei have a net positive energy yield because their combined mass is less than the sum of their individual masses before fusion. Think Albert Einstein’s E = mc2. 

After decades of experiments in nuclear fusion, in 2022, the National Ignition Facility (NIF) achieved fusion ignition, where more energy was produced from fusion than was used to trigger it. Fusion is positioned as an attractive option in the face of climate change because it’s a potential source of nearly limitless energy. With that in mind, fusion ignition was lauded as a breakthrough achievement. 

In these experiments, physicists and engineers are tasked with overcoming the intense repulsion between two light nuclei when they’re forced together (i.e., the Coulomb Barrier). This is traditionally accomplished using very high heat. Under those conditions, it’s challenging to keep high-energy plasma in one place (i.e., confinement).  

There are two main approaches to confinement. Magnetic confinement is achieved by arranging strong magnetic fields to hold the hot, dense plasma in place. Inertial confinement is achieved by compressing the plasma from all sides simultaneously. In either case, achieving fusion depends on concentrating and maintaining that high temperature and pressure in the center of the ignition chamber. The NIF experiment mentioned above leveraged inertial confinement. 

Capacitors in Fusion Energy Experiments 

Capacitors play a key role in these exciting experiments with their energy storage capabilities. In NIF’s experiment design, lasers are the initial energy source. The system draws energy from a massive capacitor bank for nearly 200 pulsed laser beams and rapidly releases that energy at the target capsule.  

Arrays of capacitors, referred to as Marx Generators, generate the incredibly high voltage needed for these experiments, and by implementing pulse forming networks, comprised of capacitors and inductors, physicists and engineers can shape the pulse of energy to meet their experimental needs.  

Outside of fusion experiments, physicists and engineers leverage the energy storage capabilities of capacitors for short pulses of high-voltage, high-current energy in plasma physics experiments. This includes flash radiography, x-ray generation, medical and weapons effects simulation (e.g., nuclear electromagnetic pulses (EMPs) and packaged pulse power).

Knowles Cornell Dubilier brand is a leading designer and manufacturer of custom high-energy discharge capacitors for applications like these in both the research and commercial realm. For more information on our high-energy discharge pulse aluminum capacitors and film capacitors, including tech sheets and specs, visit the High Energy, Pulse Discharge solutions page.

Related

Source: Knowles Precision Devices

Recent Posts

TDK Introduces High Current 80VDC Board-Mount EMI Filters

2.7.2025
11

Bourns Releases High Heat Tolerant TO-227 Thick Film Resistor

2.7.2025
6

TDK Increases Current Ratings of Automotive Thin-Film Power Inductors

1.7.2025
16

Sumida Announces New DC Common Mode Choke Coil Series

1.7.2025
8

SCHURTER Unveils High Voltage Fuses for EV Applications

30.6.2025
7

YAGEO Releases First to Market 750V Aluminum Capacitors

30.6.2025
33

Smolteks CNF-MIM Capacitors Meet Thermal and Voltage Stability Industry Requirements

30.6.2025
17

Learn How Supercapacitors Enhance Power System in Knowles eBook

30.6.2025
13

TDK Releases Industry First 1uF 100V X7R MLCCs in 1608 Case

27.6.2025
18

YAGEO Expands One Turn Inductors for AI and High-Efficiency Power Applications

27.6.2025
33

Upcoming Events

Jul 23
13:00 - 14:00 CEST

PCB design for a Smartwatch

Jul 29
16:00 - 17:00 CEST

Impact of Elevated Voltage and Temperature on Molded Power Inductors in DC/DC converters

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version