Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Inductor Resonances and its Impact to EMI

    Developing Low Inductance Film Capacitor using Bode 100 Analyzer

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Würth Elektronik Releases High Performance TLVR Coupled Inductors

    YAGEO Extends Rectangular Aluminum Electrolytic Capacitor Family

    Dr. Tomas Zednicek Vision for Europe 2025 Passive Electronics Market

    Littelfuse Releases Industry-First SMD Fuse with 1500A Interrupting Rating at 277V

    TDK Unveils Industry Highest Rated Current Multilayer Chip Beads

    Vishay Releases Automotive SMD Thick Film Power Resistor for Enhanced Protection Against Short Transient Pulses

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Inductor Resonances and its Impact to EMI

    Developing Low Inductance Film Capacitor using Bode 100 Analyzer

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Würth Elektronik Releases High Performance TLVR Coupled Inductors

    YAGEO Extends Rectangular Aluminum Electrolytic Capacitor Family

    Dr. Tomas Zednicek Vision for Europe 2025 Passive Electronics Market

    Littelfuse Releases Industry-First SMD Fuse with 1500A Interrupting Rating at 277V

    TDK Unveils Industry Highest Rated Current Multilayer Chip Beads

    Vishay Releases Automotive SMD Thick Film Power Resistor for Enhanced Protection Against Short Transient Pulses

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Clarifying MIL-STD-461 and EMI Filter Misconceptions

8.1.2020
Reading Time: 3 mins read
A A

Some filter manufacturers may quote MIL-STD-461 in their literature, however this equipment specification that can’t be applied directly to filters. Knowles Precision Devices blog provides clarity on the standard clears up some common misconceptions.

The US MIL-STD-461 specification manages electromagnetic interference emissions by setting limits on the levels that can be emitted from electrical equipment. This specification also sets regulation to control equipment susceptibility to external noise sources and establishes guidelines for properly measuring the relevant equipment features.

RelatedPosts

Inductor Resonances and its Impact to EMI

Developing Low Inductance Film Capacitor using Bode 100 Analyzer

Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

For background, a piece of electrical equipment behaves as a “source” that generates EMI; EMI, transmitted by conduction and radiation, could be incident upon a receiver (for instance, another piece of electrical equipment or a test fixture). The level of the electromagnetic signature for the conducted emissions is determined by the characteristics of the receiver. For example, a switched-mode power supply (SMPS) may be “noisy” and filament lights may be “quiet.”

If emissions from the equipment exceed the limits set by MIL-STD-461, then they need to be attenuated using an EMI filter. In order to meet requirements, the filter must suppress emissions to a low enough level for the equipment to claim compliance across the frequency spectrum.

The electromagnetic signature of the equipment determines the EMI filter performance requirements, and the filter manufacturer can only get that information from the equipment manufacturer. From there, the claim for compliance can normally be verified by test and measurement. That said, no filter manufacturer can claim that their filters “meet” MIL-STD-461. MIL-STD-461 is an equipment specification that cannot be applied directly to filters.

All filter manufacturers catalogue their filter performance as insertion loss in a reference impedance system (typically 50Ω). The filter manufacturer does not know the level of emissions associated with a specific piece of equipment, nor the real-world terminating impedances as presented to the filter. The published filter insertion loss performance at, or across, a particular frequency range will not necessarily represent the equivalent attenuation of equipment emissions in practice. The equipment manufacturer will need to conduct their own tests to determine whether the part is suitable and the filtered equipment meets the requirements of MIL-STD-461.

A situation might arise where the proposed filter is “above specification” requirement, and the equipment easily conforms to MIL-STD-461. In contrast, equipment may be so electromagnetically noisy that a proposed filter would automatically fail to support the equipment in meeting MIL-STD-461 specifications. There is no guarantee that incorporating a particular filter into a piece of equipment will enable it to comply with MIL-STD-461 emissions limits.

Some filter manufacturers may quote MIL-STD-461 in their literature; however, no filter supplier can properly quote it. At Knowles Precision Devices, if we receive a filter inquiry that refers to MIL-STD-461, we ask exactly what level of attenuation you require. We can suggest part numbers based on that detail, but ultimately you will need to test parts to determine if they are suitable.

featured image source: Knowles Precision Devices

Related

Source: Knowles Precision Devices

Recent Posts

Inductor Resonances and its Impact to EMI

16.5.2025
15

Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

15.5.2025
14

Causes of Oscillations in Flyback Converters

15.5.2025
9

Vishay Releases Automotive SMD Thick Film Power Resistor for Enhanced Protection Against Short Transient Pulses

14.5.2025
8

Exxelia Power Film Capacitors Support Critical Systems Across Various Industries

13.5.2025
23

How to design a 60W Flyback Transformer

12.5.2025
28

Modeling and Simulation of Leakage Inductance

9.5.2025
24

Fischer Releases High Vibration Robust Ratchet Locking USB-C Connector System

9.5.2025
8

KYOCERA AVX Releases Compact High-Directivity Couplers

7.5.2025
24

Murata and NIMS Built New Database of Dielectric Material Properties

5.5.2025
59

Upcoming Events

May 28
16:00 - 17:00 CEST

Power Over Data Line

View Calendar

Popular Posts

  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Inductor Resonances and its Impact to EMI

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0
  • Filters and RF Inductors

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version