Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Releases 140C Compact Vibration Robust Automotive Aluminum Capacitors

    DigiKey Presents Factory Tomorrow Season 5 Video Series

    Samsung MLCCs Lineup for In-Vehicle Infotainment

    source: Samtec

    Best Practices for Cable Management in High-Speed and High-Density Systems

    Würth Elektronik Unveils Compact Common-Mode Data Lines Chokes

    Bourns Releases TCO 240 Watt USB Mini-Breaker

    Littelfuse Adds 600W Automotive TVS Diodes for High-Energy Transient Protection

    Vishay Releases Harsh Environment Robust DC-Link Film Capacitor

    Bourns Releases Automotive High Creepage and Clearance Transformer

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Releases 140C Compact Vibration Robust Automotive Aluminum Capacitors

    DigiKey Presents Factory Tomorrow Season 5 Video Series

    Samsung MLCCs Lineup for In-Vehicle Infotainment

    source: Samtec

    Best Practices for Cable Management in High-Speed and High-Density Systems

    Würth Elektronik Unveils Compact Common-Mode Data Lines Chokes

    Bourns Releases TCO 240 Watt USB Mini-Breaker

    Littelfuse Adds 600W Automotive TVS Diodes for High-Energy Transient Protection

    Vishay Releases Harsh Environment Robust DC-Link Film Capacitor

    Bourns Releases Automotive High Creepage and Clearance Transformer

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Clarifying MIL-STD-461 and EMI Filter Misconceptions

8.1.2020
Reading Time: 3 mins read
A A

Some filter manufacturers may quote MIL-STD-461 in their literature, however this equipment specification that can’t be applied directly to filters. Knowles Precision Devices blog provides clarity on the standard clears up some common misconceptions.

The US MIL-STD-461 specification manages electromagnetic interference emissions by setting limits on the levels that can be emitted from electrical equipment. This specification also sets regulation to control equipment susceptibility to external noise sources and establishes guidelines for properly measuring the relevant equipment features.

RelatedPosts

TDK Releases 140C Compact Vibration Robust Automotive Aluminum Capacitors

DigiKey Presents Factory Tomorrow Season 5 Video Series

Samsung MLCCs Lineup for In-Vehicle Infotainment

For background, a piece of electrical equipment behaves as a “source” that generates EMI; EMI, transmitted by conduction and radiation, could be incident upon a receiver (for instance, another piece of electrical equipment or a test fixture). The level of the electromagnetic signature for the conducted emissions is determined by the characteristics of the receiver. For example, a switched-mode power supply (SMPS) may be “noisy” and filament lights may be “quiet.”

If emissions from the equipment exceed the limits set by MIL-STD-461, then they need to be attenuated using an EMI filter. In order to meet requirements, the filter must suppress emissions to a low enough level for the equipment to claim compliance across the frequency spectrum.

The electromagnetic signature of the equipment determines the EMI filter performance requirements, and the filter manufacturer can only get that information from the equipment manufacturer. From there, the claim for compliance can normally be verified by test and measurement. That said, no filter manufacturer can claim that their filters “meet” MIL-STD-461. MIL-STD-461 is an equipment specification that cannot be applied directly to filters.

All filter manufacturers catalogue their filter performance as insertion loss in a reference impedance system (typically 50Ω). The filter manufacturer does not know the level of emissions associated with a specific piece of equipment, nor the real-world terminating impedances as presented to the filter. The published filter insertion loss performance at, or across, a particular frequency range will not necessarily represent the equivalent attenuation of equipment emissions in practice. The equipment manufacturer will need to conduct their own tests to determine whether the part is suitable and the filtered equipment meets the requirements of MIL-STD-461.

A situation might arise where the proposed filter is “above specification” requirement, and the equipment easily conforms to MIL-STD-461. In contrast, equipment may be so electromagnetically noisy that a proposed filter would automatically fail to support the equipment in meeting MIL-STD-461 specifications. There is no guarantee that incorporating a particular filter into a piece of equipment will enable it to comply with MIL-STD-461 emissions limits.

Some filter manufacturers may quote MIL-STD-461 in their literature; however, no filter supplier can properly quote it. At Knowles Precision Devices, if we receive a filter inquiry that refers to MIL-STD-461, we ask exactly what level of attenuation you require. We can suggest part numbers based on that detail, but ultimately you will need to test parts to determine if they are suitable.

featured image source: Knowles Precision Devices

Related

Source: Knowles Precision Devices

Recent Posts

source: Samtec

Best Practices for Cable Management in High-Speed and High-Density Systems

4.9.2025
7

Influence of Tantalum Capacitor Pellets Size on Stability During Oxide Film Formation

29.8.2025
31

Ripple Steering in Coupled Inductors: SEPIC Case

27.8.2025
19

SEPIC Converter with Coupled and Uncoupled Inductors

26.8.2025
35

Coupled Inductors in SEPIC versus Flyback Converters

26.8.2025
25

Non-Linear MLCC Class II Capacitor Measurements Challenges

19.8.2025
62

Researchers Demonstrated HfO Anti-Ferroelectric Flexible Capacitors

19.8.2025
19

Common Mistakes in Flyback Transformer Specs

15.8.2025
79

High Voltage MLCCs Meeting the Growing Demand for Efficiency in Power Conversion

12.8.2025
192

Radiation Tolerance of Tantalum and Ceramic Capacitors

8.8.2025
126

Upcoming Events

Sep 16
17:00 - 18:00 CEST

EMI Shielding Challenges

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Core Materials, Permeability and Their Losses

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version