Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Smoltek CNF-MIM Capacitors Hit 1,000x Lower Leakage

    DigiKey Expands Line Card with 108K Stock Parts and 364 Suppliers

    Würth Elektronik Announces Partner Program

    Vishay Releases Compact 0806 Low‑DCR Power Inductor

    Murata Opens New Ceramic Capacitor Manufacturing and R&D Center in Japan

    Murata Publishes Power Delivery Guide for AI Servers

    Selecting Current Sense Transformers with Würth Elektronik REDEXPERT

    Mechanical Drift Indicator of Tantalum Capacitor Anodes Degradation under Reverse Bias

    Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

    Calculating Resistance Value of a Flyback RC Snubber 

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Smoltek CNF-MIM Capacitors Hit 1,000x Lower Leakage

    DigiKey Expands Line Card with 108K Stock Parts and 364 Suppliers

    Würth Elektronik Announces Partner Program

    Vishay Releases Compact 0806 Low‑DCR Power Inductor

    Murata Opens New Ceramic Capacitor Manufacturing and R&D Center in Japan

    Murata Publishes Power Delivery Guide for AI Servers

    Selecting Current Sense Transformers with Würth Elektronik REDEXPERT

    Mechanical Drift Indicator of Tantalum Capacitor Anodes Degradation under Reverse Bias

    Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

    Calculating Resistance Value of a Flyback RC Snubber 

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

CoolGaN Enters the Mass Market

7.9.2018
Reading Time: 3 mins read
A A

Source: Elektronik Net article

Gallium nitride is a very hot topic also at Infineon. At PCIM Europe we spoke to Dr. Steffen Metzger, Senior Director High Voltage Conversion at Infineon, about the current status.

RelatedPosts

Smoltek CNF-MIM Capacitors Hit 1,000x Lower Leakage

DigiKey Expands Line Card with 108K Stock Parts and 364 Suppliers

Würth Elektronik Announces Partner Program

DESIGN&ELEKTRONIK: Mr. Metzger, at the PCIM Europe 2017, Infineon presented the first CoolGaN products. What has happened since then?

Dr. Steffen Metzger: The products we presented last year incorporated a chip manufactured by Panasonic. Infineon has licensed parts of Panasonic’s GaN technology with the purpose of transferring this expertise to us in Villach and building up our own in-house manufacturing capacities. This transfer is now accomplished. Starting in late 2018, our CoolGaN products will also contain chips we have manufactured ourselves.

At this year’s PCIM, Infineon announced that the company will start mass production with CoolGaN by the end of 2018.

That is correct; we will start to make CoolGaN available for the mass market. So far, we have limited ourselves to a few defined niche applications and key customers. From the end of the year distributors and small customers can also order our CoolGaN products.

The CoolGaN switches improve the efficiency of the Flatpack2 SHE compared to the previous model, halving the losses. Chart credit: Eltek

In late 2017, the power supply manufacturer Eltek announced that CoolGaN was in series production with them. Which kind of application is this, and what advantages does CoolGaN offer over the existing silicon solution?

It is a 3 kilowatt telecom power supply that converts an AC voltage from 230 V to 48 V DC. The maximum efficiency of this solution is 97.8 percent, whereas Eltek’s previous high-efficiency silicon-based solution reached 96.2 percent. This cuts losses by half. This is huge! Such leaps cannot be achieved easily with silicon components.

Tim McDonald, Senior Director GaN at Infineon, told me last year that Infineon’s current CoolGaN products primarily address the data center market. Which are the markets and applications Infineon will address next?

This primarily depends on the voltage class. In the area of 600 V, power supplies for servers and telecommunications systems continue to be our main focus application. But we also look closely for possible added value of gallium nitride in the area of lower power applications like laptop adapters and chargers. From a technical point of view, the advantages are obvious: Such devices are more efficient and therefore smaller. However, no customer is willing to pay more for his charger. Therefore, you have to consider very carefully how to save money so that such a charger at the end does not cost more despite the more expensive switch. With the 400 volt class, our primary focus is on audio. For even lower voltages we see further applications such as wireless charging.

When it comes to cutting down system costs, passive components such as the transformer are the ones most affected.

Exactly. The higher switching frequencies allow passive components to become smaller and thus cheaper. In the end, the manufacturer has to analyze his bill of materials and check whether he really achieves the targeted price point.

EPC has just qualified two of its GaN transistors for automotive applications according to AEC-Q101. Infineon is also very active in that market. When will we see the first automotive-qualified CoolGaN products?

We’re about to ramp up our GaN manufacturing. An automotive qualification is a complex task. Therefore, I expect that we will need a considerable amount of time in order to accomplish this.

The current CoolGaN product portfolio is restricted to 400 volts and 600 volts. Some competitors are looking at 900 volts and 1200 volts. Does Infineon also intend to proceed in that direction?

We are offering power semiconductors manufactured of all available materials – silicon, silicon carbide and gallium nitride. We expect that in the voltage range below 600 volts GaN and silicon MOSFETs will dominate. In the higher voltage range, these are silicon carbide and silicon IGBTs.

At the moment we do not see any reason to develop a 1200 volt GaN switch. Such a device would be very complex to manufacture, as thick epitaxial layers are required. It would take a lot of time and would be consequently expensive. This in turn eliminates the cost advantage of gallium nitride grown on a standard silicon wafer compared to a silicon carbide wafer.

Such a strategy would only be suitable for companies that do not have silicon carbide in their portfolio.

Exactly.

 

featured image credit: Eltek SHE

Related

Recent Posts

Smoltek CNF-MIM Capacitors Hit 1,000x Lower Leakage

6.2.2026
15

Vishay Releases Compact 0806 Low‑DCR Power Inductor

5.2.2026
23

Murata Opens New Ceramic Capacitor Manufacturing and R&D Center in Japan

5.2.2026
57

Murata Publishes Power Delivery Guide for AI Servers

4.2.2026
80

Selecting Current Sense Transformers with Würth Elektronik REDEXPERT

3.2.2026
20

Mechanical Drift Indicator of Tantalum Capacitor Anodes Degradation under Reverse Bias

3.2.2026
35

Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

2.2.2026
28

Calculating Resistance Value of a Flyback RC Snubber 

2.2.2026
30

Bourns Releases High‑Q Air Coil Inductors for RF Aplications

29.1.2026
41

Upcoming Events

Feb 11
16:00 - 17:00 CET

What’s Next in Power Electronics Design

Feb 24
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

Mar 3
16:00 - 17:00 CET

Cybersecurity at the Eleventh Hour – from RED to CRA – Information and Discussion

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • How Metal Prices Are Driving Passive Component Price Hikes

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Degradation of Capacitors and its Failure Mechanisms

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version