Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Phillips Medisize Launches TheraVolt Medical Connectors

    The Connector Industry is Undergoing Transformation

    TDK Presents Various Large-Size Ferrite Cores for Industrial Applications

    KYOCERA AVX Releases T1 Industrial Single-Pair Ethernet Connectors

    Würth Elektronik Opens Branch in South Africa

    Comparative display of a grain size and domain structure; b free energy; c P-E loops after high-entropy ceramics (HECs) and PGS design. source: Nature Communications  ISSN 2041-1723

    Researchers Propose Novel MLCC Dielectric Design to Increase Energy Storage Capacity

    Stackpole Unveils 1W High Power Density Current Sense Chip Resistor

    Bourns Releases New 150C Shielded Power Inductors

    iNRCORE Releases New Range of 1KW HiRel Planar Transformers

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Phillips Medisize Launches TheraVolt Medical Connectors

    The Connector Industry is Undergoing Transformation

    TDK Presents Various Large-Size Ferrite Cores for Industrial Applications

    KYOCERA AVX Releases T1 Industrial Single-Pair Ethernet Connectors

    Würth Elektronik Opens Branch in South Africa

    Comparative display of a grain size and domain structure; b free energy; c P-E loops after high-entropy ceramics (HECs) and PGS design. source: Nature Communications  ISSN 2041-1723

    Researchers Propose Novel MLCC Dielectric Design to Increase Energy Storage Capacity

    Stackpole Unveils 1W High Power Density Current Sense Chip Resistor

    Bourns Releases New 150C Shielded Power Inductors

    iNRCORE Releases New Range of 1KW HiRel Planar Transformers

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Dead leaves used to produce supercapacitors

1.9.2017
Reading Time: 2 mins read
A A

source: bioenergy news

Researchers in China have developed a new process to turn fallen leaves into a capacitor which could be used to store energy in electronic devices.

RelatedPosts

Phillips Medisize Launches TheraVolt Medical Connectors

The Connector Industry is Undergoing Transformation

TDK Presents Various Large-Size Ferrite Cores for Industrial Applications

Deciduous phoenix trees lining the roadside of Northern China produce a blanket of fallen leaves every autumn. Generally, these leaves are burnt as the temperatures drop, contributing to China’s air pollution problem. Now, researchers from Shandong have discovered a method to convert this organic biomass into a porous carbon material that can be used in high tech electronics.

The ‘simple’, multistep process sees the dried leaves ground into a powder and heated to 220 degrees Celsius for 12 hours. This results in a powder consisting of tiny carbon microspheres which are then treated with a solution of potassium hydroxide and heated by increasing the temperature in a series of ‘jumps’ from 450 to 800 degrees.

During the chemical treatment the surfaces of the carbon microspheres are corroded, making them extremely porous. The final product, a black carbon powder, has a very high surface area due to the presence of many tiny pores that have been chemically etched on the surface of the microspheres. The high surface area gives the final product its extraordinary electrical properties.

Supercapacitor potential

Led by Hongfang Ma of Qilu University of Technology, the researchers then ran a series of standard electrochemical tests on the porous microspheres to determine their potential for use in electronic devices. The current-voltage curves for these materials indicate that the substance would make an ‘excellent’ capacitor. In fact, their specific capacitances of 367 Farads/gram are over three times higher than values seen in some graphene capacitors, putting the material in the range of a supercapacitor.

Capacitors are widely used electrical components that store energy by holding a charge on two conductors, separated by an insulator. Supercapacitors generally store 10 – 100 times as much energy as typical capacitors, meaning they can charge faster than typical rechargeable batteries. For this reason they are seen to hold great promise for the development of computers and hybrid electric vehicles.

Hongfang Ma’s team’s research also saw them successfully convert other biowastes, such as potato waste, corn straw, pine wood and rice straw, into carbon electrodes. Overall, the supercapacitive properties of the porous carbon microspheres made from phoenix tree leaves are higher than those reported for carbon powders derived from other biowaste materials.

 

featured image: Scanning Electron Microscopy (SEM) image of porous carbon microspheres. Credit: Hongfang Ma, Qilu University of Technology

Related

Recent Posts

Comparative display of a grain size and domain structure; b free energy; c P-E loops after high-entropy ceramics (HECs) and PGS design. source: Nature Communications  ISSN 2041-1723

Researchers Propose Novel MLCC Dielectric Design to Increase Energy Storage Capacity

24.7.2025
22

Samsung Electro-Mechanics Focuses MLCCs on AI servers and Automotive

22.7.2025
46

Modelithics Library Expands with 120 New Models

22.7.2025
4

Exxelia Offers High-Q RF Microwave Capacitors for High Reliability Applications

21.7.2025
26

Rubycon Extends Capacitance of Polymer Hybrid Aluminum Capacitors

16.7.2025
67

VINATech Partner with ONiO to Develop Batteryless IoT Power Architecture

16.7.2025
23

Murata Announces Mass Manufacturing of World’s First 0402 47µF MLCC

10.7.2025
66

VINATech Supercapacitors Enhance Automotive Safety with Reliable E-Latch Emergency Power

7.7.2025
62

Exxelia Unveils Advanced Components for the Medical Device Industry

9.7.2025
59

YAGEO Releases First to Market 750V Aluminum Capacitors

30.6.2025
63

Upcoming Events

Jul 29
16:00 - 17:00 CEST

Impact of Elevated Voltage and Temperature on Molded Power Inductors in DC/DC converters

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version