Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Samtec Expands Connector Severe Environment Testing Offering

    Silicon Capacitors Market: Shaping the Foundation for Next-Gen Miniaturization Electronics

    YAGEO Releases Compact Coupled Inductors for High-Density VR Designs

    Enhancing Energy Density in Nanocomposite Dielectric Capacitors

    Advances in the Environmental Performance of Polymer Capacitors

    Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

    Vishay Expanded Inductor Portfolio With More Than 2000 Stock Items 

    Paumanok Releases Capacitor Foils Market Report 2025-2030

    Modelithics Welcomes CapV as a Sponsoring MVP

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Samtec Expands Connector Severe Environment Testing Offering

    Silicon Capacitors Market: Shaping the Foundation for Next-Gen Miniaturization Electronics

    YAGEO Releases Compact Coupled Inductors for High-Density VR Designs

    Enhancing Energy Density in Nanocomposite Dielectric Capacitors

    Advances in the Environmental Performance of Polymer Capacitors

    Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

    Vishay Expanded Inductor Portfolio With More Than 2000 Stock Items 

    Paumanok Releases Capacitor Foils Market Report 2025-2030

    Modelithics Welcomes CapV as a Sponsoring MVP

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Different Causes of Capacitor Degradation and Failure Mechanisms

23.9.2025
Reading Time: 5 mins read
A A

The paper “Capacitor Degradation and Failure Mechanisms: Exploring Different Causes Across Technologies” was presented by Frank Puhane, Würth Elektronik eiSos GmbH & Co.KG, Waldenburg, Germany at the 5th PCNS Passive Components Networking Symposium 9-12th September 2025, Seville, Spain as paper No. 2.7.

This paper was selected and awarded by TPC Technical Program Committee as the:

RelatedPosts

Advances in the Environmental Performance of Polymer Capacitors

Connector PCB Design Challenges

How to Manage Supercapacitors Leakage Current and Self Discharge 


OUTSTANDING PAPER AWARD


Introduction

This article presents a comprehensive study of how various capacitor types age, degrade, and eventually fail. Capacitors are a crucial yet failure-prone component in power supply and electronic systems. The paper clearly distinguishes between capacitor degradation (wear-out) and total failure, and it explores how environmental, electrical, and material factors influence both phenomena across technologies such as aluminum electrolytic capacitors, aluminum polymer, hybrid polymer, metallized film capacitors, multilayer ceramic capacitors (MLCCs), and supercapacitors (EDLCs).

Key Points

  • Degradation vs. Failure: Degradation involves gradual performance loss (capacitance and ESR), while failure may be sudden and is quantified through metrics like FIT and MTBF.
  • Technology-Specific Mechanisms: Each capacitor type has unique failure drivers—temperature, voltage stress, humidity, and mechanical stress influence them differently.
  • Environmental Impact: High temperature, humidity, and applied voltage accelerate aging in most capacitors, while MLCCs are particularly susceptible to mechanical cracking.
  • Reliability Modeling: Traditional FIT/MTBF metrics do not accurately represent individual component lifetime; separate lifetime estimation models are needed.
  • Case Studies: Practical experiments on electrolytic, polymer, film capacitors, MLCCs, and supercapacitors illustrate correlations between environmental stress, weight loss, ESR increase, and capacitance drop.

Extended Summary

The article begins by clarifying the difference between capacitor degradation—a progressive reduction in performance—and total failure. While FIT and MTBF provide statistical reliability measures, they often overestimate practical lifetime because they do not predict when a capacitor can no longer fulfill its functional role in a circuit.

The paper thoroughly examines various capacitor technologies. Metallized film capacitors are sensitive to temperature, humidity, and AC voltage, with electrochemical corrosion being the critical failure mechanism under harsh conditions. Lifetime modeling often uses Arrhenius or Eyring laws, but parameters vary significantly among manufacturers. Aluminum electrolytic capacitors primarily degrade through electrolyte evaporation accelerated by high temperatures. Their lifetime is commonly modeled with Arrhenius-based formulas incorporating temperature, voltage, and ripple current effects. Aluminum polymer and hybrid polymer capacitors avoid electrolyte dry-out but are sensitive to humidity, which increases ESR over time, while capacitance remains stable.

Multilayer ceramic capacitors (MLCCs) have undergone major changes with the adoption of base-metal electrodes and miniaturization. BME MLCCs are prone to insulation resistance degradation due to oxygen vacancy electromigration and are very sensitive to mechanical stress. High CV density and thin dielectrics make them more vulnerable to cracking, which may lead to long-term reliability issues. Supercapacitors (EDLCs) show degradation under prolonged voltage stress due to slow faradaic reactions and electrolyte aging. Long-term endurance tests demonstrate that ESR and capacitance loss occur in two phases, with the initial period showing the fastest changes.

The article also includes case studies that quantify how environmental and operational conditions affect performance over time. For electrolytic capacitors, weight loss correlates with capacitance reduction under high-temperature endurance tests. Polymer and hybrid capacitors show ESR increases under 85°C/85% RH stress without significant capacitance loss. Metallized film capacitors exposed to 85°C/85% RH with AC voltage reveal rapid early capacitance drop, while THB-rated variants fare better. MLCCs demonstrate long-term voltage-dependent capacitance drift, and supercapacitors exhibit extended lifetimes under room-temperature, rated-voltage conditions with gradual performance decay.

Finally, the authors emphasize that lifetime estimation should be tailored to each capacitor type and application. FIT/MTBF provides statistical reliability for large populations but does not define practical end-of-life. Predictive methods incorporating environmental and operational factors—potentially enhanced with physics-based machine learning—are increasingly valuable for real-world reliability assurance.

Conclusion

The study highlights that capacitor lifetime and failure depend heavily on technology, environmental stress, and operating conditions. Accurate lifetime prediction requires distinguishing between statistical failure rates and practical end-of-life behavior. By analyzing degradation mechanisms, accelerated tests, and long-term studies across different capacitor technologies, the paper provides clear guidance for engineers designing high-reliability systems. Incorporating advanced modeling and predictive approaches can help in mitigating failures, extending service life, and improving the reliability of electronic systems where capacitors remain critical components.

2_7_Wuerth Capacitor Degradation and Failure Mechanisms_FPuDownload

Related

Source: PCNS

Recent Posts

Silicon Capacitors Market: Shaping the Foundation for Next-Gen Miniaturization Electronics

10.10.2025
9

Enhancing Energy Density in Nanocomposite Dielectric Capacitors

9.10.2025
15

Advances in the Environmental Performance of Polymer Capacitors

8.10.2025
32

Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

8.10.2025
15

Paumanok Releases Capacitor Foils Market Report 2025-2030

7.10.2025
16

Modelithics Welcomes CapV as a Sponsoring MVP

7.10.2025
3

Benefits of Tantalum Powder Stress–Strain Curve Evaluation vs Conventional Wet Test

3.10.2025
23

Electrolyte Selection and Performance in Supercapacitors

3.10.2025
31

Connector PCB Design Challenges

3.10.2025
34

Researchers Demonstrated High Energy Ceramic Capacitors Stable in Wide Temperature Range

2.10.2025
24

Upcoming Events

Oct 14
16:00 - 17:00 CEST

Smart Sensors, Smarter AI: Building Reliable Edge Systems

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Oct 28
8:00 - 15:00 CET

Power Up Your Design: SN6507 and the Ready-to-Use Development Kit

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version