Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Reliability of E-Textile Conductive Paths and Passive Component Interfaces

    Flaked Tantalum Powders: High Capacitance Powders for High Reliable Tantalum Capacitors

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Design of High Precision Integrated Resistive Voltage Dividers

    Textile-Based Antennas

    Space Evaluation Testing on SAW Filter Based on Piezo-On-Insulator Technology

    Samsung Electro-Mechanics Releases 470nF 16V MLCC in 0402 Size

    Beyond 85/85 Lifetime Estimation of PP Film Capacitors in Humid Environments

    Life Cycle Assessment of a Graphene-Based Supercapacitor

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Reliability of E-Textile Conductive Paths and Passive Component Interfaces

    Flaked Tantalum Powders: High Capacitance Powders for High Reliable Tantalum Capacitors

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Design of High Precision Integrated Resistive Voltage Dividers

    Textile-Based Antennas

    Space Evaluation Testing on SAW Filter Based on Piezo-On-Insulator Technology

    Samsung Electro-Mechanics Releases 470nF 16V MLCC in 0402 Size

    Beyond 85/85 Lifetime Estimation of PP Film Capacitors in Humid Environments

    Life Cycle Assessment of a Graphene-Based Supercapacitor

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Efficient Power Converters: Duty Cycle vs Conduction Losses

29.9.2025
Reading Time: 4 mins read
A A

Professor Sam Ben-Yaakov in this video explains the impact of the duty cycle of a PWM converter on conduction losses to design efficient power converters. 

Pulse Width Modulated (PWM) converters are the backbone of modern power electronics, enabling efficient voltage regulation across a wide range of applications.

RelatedPosts

EMI Noise Mitigation in Automotive 48V Power Supply Systems

Ripple Steering in Coupled Inductors: SEPIC Case

Coupled Inductors in SEPIC versus Flyback Converters

A critical factor in their performance is the duty cycle, which directly influences conduction losses, efficiency, and thermal behavior.

This presentation explores how duty cycle affects conduction losses in Buck, Boost, Buck-Boost, and Flyback converters, with emphasis on both Continuous Conduction Mode (CCM) and Discontinuous Conduction Mode (DCM).

Key Points

  • Converter transfer functions are strongly dependent on duty cycle.
  • Conduction losses arise from MOSFET on-resistance (RDS(on)) and diode voltage drop (VD).
  • In Buck converters, total conduction loss is independent of duty cycle.
  • In Boost, Buck-Boost, and Flyback converters, losses scale with duty cycle due to inductor current magnification.
  • Simulation confirms that the ratio Pout · D / IRMS2 remains approximately constant in DCM.

Chapter 1: Converter Transfer Functions

The fundamental voltage transfer ratios of PWM converters are:

  • Buck: Vout / Vin = D
  • Boost: Vout / Vin = 1 / (1 − D)
  • Buck-Boost: Vout / Vin = D / (1 − D)
  • Flyback: Vout / Vin = (D × N) / (1 − D)

These relationships highlight how duty cycle D and transformer turns ratio N determine the achievable voltage conversion.

Chapter 2: Conduction Loss Mechanisms

Conduction losses are primarily due to MOSFET channel resistance and diode forward voltage. Representative expressions include:

  • MOSFET Loss: Iout2 · RDS(on)
  • MOSFET Loss with Duty Cycle: Iout2 · RDS(on) · D
  • Diode Loss: Iout · VD · (1 − D)
  • Inductor Current: IL = Iout / (1 − D)
  • Total Conduction Loss: IL2 · RDS(on)
  • Primary RMS Current (Flyback): Iprimary,RMS = (Iout / N) · √D

Chapter 3: Duty Cycle Dependence

In Buck converters, conduction losses are independent of duty cycle since the inductor current equals the output current. In contrast, Boost and Buck-Boost converters exhibit losses that increase with duty cycle because the inductor current is amplified:

IL = Iout / (1 − D)

As D approaches unity, inductor current rises sharply, leading to higher conduction and switching losses. Flyback converters add complexity due to transformer turns ratio N, which interacts with duty cycle to determine both voltage stress and conduction losses.

Chapter 4: Simulation and Validation

Simulations were performed with stepped duty cycles from 0.2 to 0.7. Results showed that RMS currents and output power followed expected theoretical trends. Importantly, the calculated ratio:

Pout · D / IRMS2 ≈ constant

This invariance validates the analytical expression for switch conduction loss in Discontinuous Conduction Mode (DCM). The close agreement between simulation and theory confirms the robustness of the derived models.

Conclusion

Duty cycle plays a central role in determining conduction losses in PWM converters. While Buck converters maintain duty cycle–independent conduction losses, Boost, Buck-Boost, and Flyback topologies exhibit strong duty cycle dependence due to inductor current scaling.

The analytical models, supported by simulation, demonstrate that conduction loss behavior can be accurately predicted and optimized by careful duty cycle and transformer ratio selection. These insights are crucial for designing efficient power converters in both CCM and DCM operation.

Related

Source: Sam Ben-Yaakov

Recent Posts

Reliability of E-Textile Conductive Paths and Passive Component Interfaces

29.9.2025
2

Flaked Tantalum Powders: High Capacitance Powders for High Reliable Tantalum Capacitors

29.9.2025
2

Textile-Based Antennas

29.9.2025
3

Beyond 85/85 Lifetime Estimation of PP Film Capacitors in Humid Environments

26.9.2025
17

Lifetime Assessment for Capacitors in EPS Application

25.9.2025
31

Passive Components J-STD-075 Process Sensitivity Level Classification And Labeling

25.9.2025
21

New EPN Dielectric Film Capacitors Featuring High Temp and Power Density

25.9.2025
35

E-Textile SMD-Ribbon Joints Protections Against Sweat

25.9.2025
16

Reliability of Tantalum Capacitors: the Role of Internal Stress

25.9.2025
52

Bourns Releases Semi-Shielded Power Inductor with Polarity Control

25.9.2025
11

Upcoming Events

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 8
11:00 - 12:00 CEST

PCB Online Shop – simply “Made in Germany” by Würth Elektronik

Oct 14
16:00 - 17:00 CEST

Smart Sensors, Smarter AI: Building Reliable Edge Systems

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version