Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Increases Maximum Inductance Values of Semi-Shielded Power Inductors

    YAGEO Unveils Next Gen BMS Isolation Transformers

    Littelfuse Compact Tactile Switch Offers Low-Noise Switching and Dust Protection

    Murata Announces Mass Manufacturing of World’s First 0402 47µF MLCC

    Bourns Releases SMD Chip High-Power Metal Strip Current Sense Resistors in 2010 Case

    Würth Elektronik Releases High-Frequency Connectors for Antenna Cables

    Murata Releases First High-Frequency XBAR Filter for Next-Gen Networks

    Vishay NTC Immersion Thermistor Delivers Fast Response in Liquid Cooled Automotive Systems

    Wk 27 Electronics Supply Chain Digest

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Increases Maximum Inductance Values of Semi-Shielded Power Inductors

    YAGEO Unveils Next Gen BMS Isolation Transformers

    Littelfuse Compact Tactile Switch Offers Low-Noise Switching and Dust Protection

    Murata Announces Mass Manufacturing of World’s First 0402 47µF MLCC

    Bourns Releases SMD Chip High-Power Metal Strip Current Sense Resistors in 2010 Case

    Würth Elektronik Releases High-Frequency Connectors for Antenna Cables

    Murata Releases First High-Frequency XBAR Filter for Next-Gen Networks

    Vishay NTC Immersion Thermistor Delivers Fast Response in Liquid Cooled Automotive Systems

    Wk 27 Electronics Supply Chain Digest

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Engineers Print Wearable Sensors Directly on Skin without Heat

20.10.2020
Reading Time: 3 mins read
A A
With a novel layer to help the metallic components of the sensor bond, an international team of researchers printed sensors directly on human skin.
IMAGE: Ling Zhang, Penn State/Cheng Lab and Harbin Institute of Technology

With a novel layer to help the metallic components of the sensor bond, an international team of researchers printed sensors directly on human skin. IMAGE: Ling Zhang, Penn State/Cheng Lab and Harbin Institute of Technology

Wearable sensors are evolving from watches and electrodes to bendable devices that provide far more precise biometric measurements and comfort for users. Now, an international team of researchers has taken the evolution one step further by printing sensors directly on human skin without the use of heat.  

Led by Huanyu “Larry” Cheng, Dorothy Quiggle Career Development Professor in the Penn State Department of Engineering Science and Mechanics, the team published their results in ACS Applied Materials & Interfaces. 

RelatedPosts

Bourns Increases Maximum Inductance Values of Semi-Shielded Power Inductors

YAGEO Unveils Next Gen BMS Isolation Transformers

Littelfuse Compact Tactile Switch Offers Low-Noise Switching and Dust Protection

“In this article, we report a simple yet universally applicable fabrication technique with the use of a novel sintering aid layer to enable direct printing for on-body sensors,” said first author Ling Zhang, a researcher in the Harbin Institute of Technology in China and in Cheng’s laboratory. 

Cheng and his colleagues previously developed flexible printed circuit boards for use in wearable sensors, but printing directly on skin has been hindered by the bonding process for the metallic components in the sensor. Called sintering, this process typically requires temperatures of around 572 degrees Fahrenheit (300 degrees Celsius) to bond the sensor’s silver nanoparticles together. 

“The skin surface cannot withstand such a high temperature, obviously,” Cheng said. “To get around this limitation, we proposed a sintering aid layer — something that would not hurt the skin and could help the material sinter together at a lower temperature.”

By adding a nanoparticle to the mix, the silver particles sinter at a lower temperature of about 212 F (100 C). 

“That can be used to print sensors on clothing and paper, which is useful, but it’s still higher than we can stand at skin temperature,” Cheng said, who noted that about 104 F (40 C) could still burn skin tissue. “We changed the formula of the aid layer, changed the printing material and found that we could sinter at room temperature.” 

The room temperature sintering aid layer consists of polyvinyl alcohol paste — the main ingredient in peelable face masks — and calcium carbonate — which comprises eggshells. The layer reduces printing surface roughness and allows for an ultrathin layer of metal patterns that can bend and fold while maintaining electromechanical capabilities. When the sensor is printed, the researchers use an air blower, such as a hair dryer set on cool, to remove the water that is used as a solvent in the ink. 

“The outcome is profound,” Cheng said. “We don’t need to rely on heat to sinter.” 

The sensors are capable of precisely and continuously capturing temperature, humidity, blood oxygen levels and heart performance signals, according to Cheng. The researchers also linked the on-body sensors into a network with wireless transmission capabilities to monitor the combination of signals as they progress. 

The process is also environmentally friendly, Cheng said. The sensor remains robust in tepid water for a few days, but a hot shower will easily remove it. 

“It could be recycled, since removal doesn’t damage the device,” Cheng said. “And, importantly, removal doesn’t damage the skin, either. That’s especially important for people with sensitive skin, like the elderly and babies. The device can be useful without being an extra burden to the person using it or to the environment.” 

Next, the researchers plan to alter the technology to target specific applications as needed, such as a precise on-body sensor network placed to monitor the particular symptoms associated with COVID-19. 

Other contributors include Hongjun Ji, Senpei Xie, Yaoyin Li, Ziheng Ye, Tiesong Lin, Xiangli Liu, Xuesong Leng, Mingyu Li, Pengdong Feng, Jiaheng Zhang and Xing Ma, all of whom are affiliated with the Harbin Institute of Technology; Houbing Huang and Xiaoming Shi, both with the Beijing Institute of Technology; and Ning Yi, with the Penn State Department of Materials Science and Engineering.  

This work was supported by Penn State, the National Science Foundation, the American Chemical Society Petroleum Research Fund, the Shenzhen Science and Technology Program, the Bureau of Industry and Information Technology of Shenzhen and the National Science Foundation of China.

Related

Source: Penn State

Recent Posts

H2-Assisted Thermal Treatment of Electrode Materials Increases Supercapacitors Energy Density

13.5.2025
14

Researchers Present Hybrid Supercapacitor Zn-Ion Microcapacitors

12.5.2025
54

Murata and NIMS Built New Database of Dielectric Material Properties

5.5.2025
111

3D Printing of Passive Components from Manufacturer Perspective

26.4.2025
54

Hybrid Electrochemical Electrolytic Capacitor Provides High Frequency and High Capacitance Performance

25.4.2025
77

Supercapacitor Separator with High Ionic Conductivity Enables Line-Filter Applications at High Power

21.3.2025
57

Interlacing Strain Engineering Boost Energy Density of MLCCs

12.2.2025
87

Researchers Developed BaTiO3 based MLCC Material with High Energy Density at High Temperature Range

21.1.2025
112
A film a few atoms thick of non-crystalline niobium phosphide conducts better through the surface to make the material, as a whole, a better conductor. | Il-Kwon Oh / Asir Khan

Researchers Developed High Conductive Nanowires

20.1.2025
60

CNF-MIM Capacitors Benefits vs Deep Trench Capacitors

9.1.2025
145

Upcoming Events

Jul 16
16:00 - 17:00 CEST

Design a 2kW PSFB converter before your cold drink gets warm

Jul 23
13:00 - 14:00 CEST

PCB design for a Smartwatch

Jul 29
16:00 - 17:00 CEST

Impact of Elevated Voltage and Temperature on Molded Power Inductors in DC/DC converters

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version