Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Vishay Releases High Current 3.3 V to 36 V ESD Protection Diodes

    TDK Extends SMT Gate Drive Transformers to 1000 V

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Researchers Demonstrated HfO Anti-Ferroelectric Flexible Capacitors

    Connector Industry Achieves Double-Digit Growth

    Stackpole Unveils Metal Element High Current Chip Jumpers

    Common Mistakes in Flyback Transformer Specs

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Vishay Releases High Current 3.3 V to 36 V ESD Protection Diodes

    TDK Extends SMT Gate Drive Transformers to 1000 V

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Researchers Demonstrated HfO Anti-Ferroelectric Flexible Capacitors

    Connector Industry Achieves Double-Digit Growth

    Stackpole Unveils Metal Element High Current Chip Jumpers

    Common Mistakes in Flyback Transformer Specs

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Fuses for Auto Industry According to AEC-Q200

6.11.2017
Reading Time: 3 mins read
A A

source: EETimes news

Marcel Schmid 11/2/2017

RelatedPosts

SEPIC Converter with Coupled and Uncoupled Inductors

Coupled Inductors in SEPIC versus Flyback Converters

Vishay Releases High Current 3.3 V to 36 V ESD Protection Diodes

The tricky task of charging battery cells in an electric vehicle within the shortest amount of time possible lies in “battery balancing.”

In recent decades, cars have increased in numbers as well as dimensions. They have become more comfortable, more powerful, safer, and, therefore, heavier as well, with mid-range cars already weighing 1.5 tons. It goes without saying that a significant amount of energy will be required to adequately power an electric car of this class in the future.

This energy is achieved by interconnecting small battery cells — size 4 VDC/3,200 mAh per cell — in parallel and in a row. One-hundred cells in a row are needed to attain an operating voltage of approximately 400 VDC. The endurance, range, and performance of the overall package are then achieved by connecting many of these 400-V strings in parallel. In very powerful electric vehicles, several-thousand cells are quickly assembled in this way.

Not long ago, a smartphone manufacturer in Korea had to deal with a battery problem, which cost them a fortune. A single, small battery led to panic; it even went so far as the smartphone being banned. Airlines declared that this type of mobile phone would no longer be allowed on the aircraft. Ordinary paying passengers were faced with the choice to hand over their mobile phone or get off the plane. Was this panic justified? It’s hard to say. But when you know how much energy can be stored in a small battery nowadays, it is advisable to err on the side of caution.

Bearing in mind that thousands of such battery cells are fitted in an electric vehicle, the charging process is of great importance. The cells must ultimately be charged within the shortest amount of time possible. The solution for this tricky task is referred to as “battery balancing.” This describes an electronic circuit — usually part of a battery management system — that ensures a steady, even electrical charge of numerous battery cells within a battery pack that are similar in their construction but with slightly differing manufacturing tolerances.

And this is how it works: The cells that absorb energy very quickly are slowed down a little. The weakest link in the chain sets the pace during the charging process. Each cell needs to be handled individually. This is the only way to use the maximum capacitance of a battery pack and to counteract any aging/weakening of individual cells.

Of course, each individual cell in the battery pack must be protected against overcurrents. This takes several-thousand fuses per battery pack, depending on each individual one. There is no tolerance for errors here. So what demands are placed on this kind of fuse? Complete reliability is key. Such protection must work for at least 15 years without any hitches. Fuses must perform their function just as well in the coldest of winters as in the sweltering heat. Shock, vibration, daily grind, switching on, switching off, accelerating — cyclical strength is indispensable. The demands made on these fuses are enormous.

Behind the acronym AEC (Automotive Electronics Council), there is a U.S.-based organization that focuses on the standardization of the qualification of electronic components in the automotive supply industry.

The standard Q200, which was introduced in the middle of the 1990s, describes the requirements for passive components, while standard Q100 and its spinoffs concentrate on the active components. These AEC standards are recognized worldwide and are accepted by all the leading manufacturers in the automotive industry.

Specific tests and a set of specifically defined requirements for fuses used in cars were not relevant throughout automotive development history. However, this has completely changed with the introduction of electronic control units and electric drives. Fuses will also be included as a topic in the next update of the Q200 standard.

 

— Marcel Schmid is the editor in the marketing and communication team of SCHURTER AG in Lucerne, Switzerland. After studies in electrical engineering at ETH Zurich, he worked for over 20 years in publishing for several special interest magazines as an editor-in-chief.

image source: Schurter AG

Related

Recent Posts

Vishay Releases High Current 3.3 V to 36 V ESD Protection Diodes

25.8.2025
11

Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

13.8.2025
12

Stackpole Extends Voltage of High Temp Chip Resistors

13.8.2025
11

High Voltage MLCCs Meeting the Growing Demand for Efficiency in Power Conversion

12.8.2025
151

TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

7.8.2025
35

Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

6.8.2025
49

Vishay Releases High Saturation 180C Automotive Inductors

6.8.2025
27

SCHURTER Releases Chip Fuse for ATEX and Precision Applications

4.8.2025
18

Hirose Releases High Current Vibration-Resistant Connectors

4.8.2025
12

PCNS 2025 Final Program Announced!

4.8.2025
99

Upcoming Events

Aug 27
17:00 - 18:00 CEST

Capacitor Assemblies for High-Power Circuit Designs

Sep 3
15:30 - 17:30 CEST

How to Choose Your Magnetic Supplier

Sep 16
17:00 - 18:00 CEST

EMI Shielding Challenges

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Core Materials, Permeability and Their Losses

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version