Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Combines Varistor and Gas Discharge Tube into One Component

    Vishay Extends Automotive TO-220 Thick Film Power Resistors with 30W Option

    Transient Suppression Guide

    Rubycon Releases High Capacitance Radial Lead Aluminum Electrolytic Capacitors

    October 2025 ECIA US Components Sales Sentiment Remains Strong but Weakens in November

    Wk 46 Electronics Supply Chain Digest

    Overvoltage and Transient Protection for DC/DC Power Modules

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    Littelfuse Releases TMR Switches with Ultra-Low Power Magnetic Sensing

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Combines Varistor and Gas Discharge Tube into One Component

    Vishay Extends Automotive TO-220 Thick Film Power Resistors with 30W Option

    Transient Suppression Guide

    Rubycon Releases High Capacitance Radial Lead Aluminum Electrolytic Capacitors

    October 2025 ECIA US Components Sales Sentiment Remains Strong but Weakens in November

    Wk 46 Electronics Supply Chain Digest

    Overvoltage and Transient Protection for DC/DC Power Modules

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    Littelfuse Releases TMR Switches with Ultra-Low Power Magnetic Sensing

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Google Pixel 2 XL teardown shows how its squeezable sides work with resistor strain gauges

20.10.2017
Reading Time: 2 mins read
A A

source: The Verge news

The Pixel 2 comes out to market recently, and so of course iFixit has torn open the first unit it could find to let us see what’s going on inside. iFixit says there are actually two rows of strain gauges, giving the Pixel even more sensitivity and “allowing it to detect even the slightest of deflections.”

RelatedPosts

TDK Combines Varistor and Gas Discharge Tube into One Component

Vishay Extends Automotive TO-220 Thick Film Power Resistors with 30W Option

Transient Suppression Guide

The site published its inside look at the Pixel 2 XL and while there aren’t a ton of surprises to be found (the camera module is pretty large; Google is hiding a secret chip), cracking open the phone does reveal one thing we didn’t know a ton about: how the Pixel’s Active Edge feature actually works.

Active Edge is Google’s name for the feature that lets you squeeze the Pixel 2’s sides to open up the Google Assistant. It turns out, it works using a pair of “strain gauges” on either side of the phone. The setup looks like this:

Pixel 2 XL Active Edge sensor

photo source: iFixit

What you’re looking at is a series of steel blocks with resistors between them, sandwiched inside a pair of flexible circuit boards, according to iFixit. Those resistors are the strain gauges. They’re sensitive to being flexed, so the Pixel can pick up changes in the electrical signal that goes through them. That means when you squeeze the outside of the Pixel, you’re ever so slightly bending the case, deforming the resistors, and giving the Pixel some data on how much they’re being bent.

iFixit says there are actually two rows of strain gauges on each sensor, giving the Pixel even more sensitivity and “allowing it to detect even the slightest of deflections.” That increased range is likely also what allows Google to offer a variety of pressure settings for when the Active Edge feature goes off. This seems to be the same setup that HTC used in the U11 for an identical feature called Edge Sense (which isn’t terribly surprising — HTC built the smaller Pixel 2).

It turns out this is pretty similar to how Apple’s Force Touch trackpads work, too. The trackpads don’t move, but they’re still able to register a click when force is applied to them. iFixit found a series of “tiny strain gauges” beneath the trackpad when it open one up two years ago, and the site had expected to find something similar inside the Pixel 2.

You can head over to iFixit to check out the rest of what’s inside this year’s bigger Pixel here.

featured picture source: iFixit

Related

Recent Posts

Vishay Extends Automotive TO-220 Thick Film Power Resistors with 30W Option

19.11.2025
9

Bourns Unveils High-Precision Wirewound Resistor with Long-Term Stability

30.10.2025
30

Stackpole Introduces Automotive Thick Film Wide Termination Chip Resistors

20.10.2025
27

Bourns Release Automotive 4-Terminal Shunt Resistors

17.10.2025
38

Vishay Releases Automotive TO-220 Case 50W Thick Film Power Resistor

16.10.2025
28

Stackpole Offers High Voltage Plate Resistors up to 40KV

2.10.2025
43

Vishay Unveils 5W Power Metal Strip Resistor in Compact 1206 Case Size

1.10.2025
42

Reliability of E-Textile Conductive Paths and Passive Component Interfaces

29.9.2025
25

Efficient Power Converters: Duty Cycle vs Conduction Losses

29.9.2025
77

Upcoming Events

Dec 2
December 2 @ 12:00 - December 4 @ 14:15 CET

Microwave Packaging Technology

Dec 9
December 9 @ 12:00 - December 11 @ 14:15 EST

Space and Military Standards for Hybrids and RF Microwave Modules

Dec 10
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version