• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

How Controlled Self-Healing of Power Film Capacitors Works and Compares with Aluminum Capacitors

8.11.2023

Sumida Extends Ferrite Drum Inductors Offering with Lower DCR and Wider Inductance Range

23.11.2023

How Clock Oscillator Works

23.11.2023

Toroidal Flat Wire PFC Inductors vs. Round Wire PFC Inductors; Würth Elektronik Webinar

23.11.2023

Quasi-Lumped Filters: Combining Filter Technologies to Create Higher-Value Compact Filters

21.11.2023

TDK Unveils EMC Noise Suppression Filters for Audio Lines

21.11.2023

November 23 – Interconnect, Passives & Electromechanical Components Market Insights

21.11.2023
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Market Insights
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Sumida Extends Ferrite Drum Inductors Offering with Lower DCR and Wider Inductance Range

    How Clock Oscillator Works

    Toroidal Flat Wire PFC Inductors vs. Round Wire PFC Inductors; Würth Elektronik Webinar

    Quasi-Lumped Filters: Combining Filter Technologies to Create Higher-Value Compact Filters

    TDK Unveils EMC Noise Suppression Filters for Audio Lines

    November 23 – Interconnect, Passives & Electromechanical Components Market Insights

    Understanding The Power of Magnetic Fusion

    Murata Releases World’s First High Energy Density 1uF 100V MLCC in a 1608 Size

    Modelithics Introduces EDA Integrity Solutions as a Modelithics Reseller for Israel

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Addressing EMC Issues; Texas Instruments and Würth Elektronik Webinar

    DC-Link Film Capacitors for DC-Charger Applications; WE Webinar

    Transformer Design for EMC; WE Webinar

    Filter Calculation and Selection with REDEXPERT EMI Filter Designer; WE Webinar

    Experimental Demonstration of Inductor Back Electromotive Force EMF

    Charging/Discharging of Linear andNon-linear Capacitors

    How to Select Inductor For Switching Power Supply

    Oscillators Integration, Selection Guide and Design In

    Input Capacitor Selection for Power Supplies – Part 3: Electrolytic Capacitors

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Market Insights
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Sumida Extends Ferrite Drum Inductors Offering with Lower DCR and Wider Inductance Range

    How Clock Oscillator Works

    Toroidal Flat Wire PFC Inductors vs. Round Wire PFC Inductors; Würth Elektronik Webinar

    Quasi-Lumped Filters: Combining Filter Technologies to Create Higher-Value Compact Filters

    TDK Unveils EMC Noise Suppression Filters for Audio Lines

    November 23 – Interconnect, Passives & Electromechanical Components Market Insights

    Understanding The Power of Magnetic Fusion

    Murata Releases World’s First High Energy Density 1uF 100V MLCC in a 1608 Size

    Modelithics Introduces EDA Integrity Solutions as a Modelithics Reseller for Israel

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Addressing EMC Issues; Texas Instruments and Würth Elektronik Webinar

    DC-Link Film Capacitors for DC-Charger Applications; WE Webinar

    Transformer Design for EMC; WE Webinar

    Filter Calculation and Selection with REDEXPERT EMI Filter Designer; WE Webinar

    Experimental Demonstration of Inductor Back Electromotive Force EMF

    Charging/Discharging of Linear andNon-linear Capacitors

    How to Select Inductor For Switching Power Supply

    Oscillators Integration, Selection Guide and Design In

    Input Capacitor Selection for Power Supplies – Part 3: Electrolytic Capacitors

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

How Controlled Self-Healing of Power Film Capacitors Works and Compares with Aluminum Capacitors

8.11.2023
Reading Time: 7 mins read
A A

This article written by Kevin Cho, KYOCERA-AVX Corporation discusses the distinctions between aluminum electrolytic and metal film capacitors before considering some distinct advantages of film capacitors and the self-healing properties of metallized film capacitors.

Abstract:

In high voltage, high energy applications such as electric trains and solar power grids, the safety and reliability of capacitors are paramount.

RelatedPosts

How Clock Oscillator Works

KYOCERA AVX Unveils Safety-Certified MLCC Capacitors up to 6kV Pulse Capability

KYOCERA AVX Released Miniature High-Pass Thin-Film Filters

Catastrophic failures and associated explosions or fires are unacceptable. Just as importantly, service lifetime and predictability for optimizing up-time are critical to the product’s success.

Film capacitors with controlled self-healing are the ideal solution to these challenges and can be obtained in various sizes and technical specifications.

Energy Storage Capacitors

High voltage capacitors for energy storage are generally divided into two distinct technologies: aluminum electrolytic and metal film. Electrolytic capacitors rely on an aluminum oxide dielectric grown on aluminum foil electrodes to form the basic structure. These foils are wound and electrically contacted with an electrolyte-soaked paper separator, as shown in Figure 1.

On the other hand, metal film capacitors rely on a metallized dielectric film to form the capacitive structure. Many film materials are available – most commonly, polypropylene and polyester. As shown in Figure 2, the metallized film is wound and contacted on either end to form an elementary capacitor, which is then stacked in series or parallel to realize higher voltage, higher-capacity devices.

Figure 1: Conventional aluminum electrolytic capacitor construction. Image courtesy of KYOCERA AVX.
Figure 2: Metal film capacitor structure. Image courtesy of KYOCERA AVX.

Aluminum electrolytics tend to be cost-effective in applications requiring high capacitance values at DC voltages less than 800V. These applications include DC-DC converters, motor starters, and frequency converters. When higher voltages are required, especially in non-polarized AC circuits, metal film capacitors are the only alternative option. Some example applications include sample and-hold circuits, snubbers, and peak voltage detectors.

However, as shown in Figure 3, both types of capacitors have tradeoffs that significantly overlap in their application spaces. For example, either capacitor may be used in lighting ballasts, noise filters, and DC blocking circuits depending on the design constraints.

Figure 3: Three primary capacitor technologies and their applications. Image courtesy of KYOCERA AVX

Film Capacitor Advantages

While aluminum electrolytic capacitors are a cost-effective solution in many designs, certain characteristic requirements may inhibit their use. The following table presents some critical parameters that may necessitate choosing a film capacitor for a particular application.

Current reversal, life-time, and end of life failure mode are three of the most critical parameters to consider. Current reversal is impossible in aluminum electrolytics because the oxide dielectric is initially grown on the aluminum electrodes via anodization. Reversing the voltage on such a structure results in a breakdown of the dielectric and eventual failure. Similarly, the overall lifetime and failure modes of aluminum electrolytics are
undesirable.

The oxide dielectric layer gradually breaks down, and the loss of electrolyte results in lower voltage tolerance and gas generation. Eventually, the device will fail in a short circuit condition and potentially explode or cause damage to supporting devices.

Table 1: Comparison of critical parameters between film and aluminum electrolytic capacitors. Image courtesy of KYOCERA AVX

Controlled Self-Healing

Figure 4: Basic self-healing process of film capacitors. Image courtesy of KYOCERA AVX.

Metallized film capacitors exhibit a self-healing property that significantly improves their lifetime reliability characteristics. Figure 4 depicts the basic process wherein a dielectric defect results in a high current, high-temperature short circuit that quickly demetallizes the surrounding area.

Unfortunately, this mechanism can be difficult to control, and in the worst case, a run-away process can result, causing the destruction of the entire capacitor in short order. To avoid this, KYOCERA AVX developed a controlled self-healing process in 1974 based on the segmentation of overall capacitance into elementary cells protected by fuse gates.

A micrograph is shown in Figure 5a, where an elementary capacitive cell has experienced a defect, and the resulting overcurrent condition has broken all four of its fuses – Figure 5b. This isolates the defective cell without affecting the remainder of the capacitor. Also shown is the overall reduction of capacitance over time as more and more of these elementary cells go off-line.

This controlled self-healing technique is now the standard construction for all KYOCERA AVX’s film capacitor solutions, including dry, no free oil, and oil impregnated. As a result, these capacitors experience no catastrophic failure (short circuit). Just as importantly, the decrease in bulk capacitance over time is well modeled and directly measurable, allowing for an accurate prediction of capacitor lifetime and determination of an optimal service schedule.

Figure 5a: Example of metallized cell self-healed defect with fuse element broken
Figure 5b: Reduction of total capacitance with oxide degradation over time.

Figure 6 presents three lifetime curves of capacitance change to illustrate the point. The red line is the worst-case scenario with no self-healing strategy. The degradation is unpredictable and may result in a catastrophic failure. The yellow line uses a fused design for control, but the fuses are improperly sized for the elementary cell. The device fails prematurely through rapid loss of capacitance over time. The blue line presents the KYOCERA
AVX design, where decades of experience have yielded a design with no catastrophic failure and an extended, highly predictable lifetime.

Figure 6 : Comparison of capacitor lifetimes for different self-healing strategies. Image courtesy of KYOCERA AVX

KYOCERA AVX Capacitors for Reliable Self-Healing Protection

As of December 2020, KYOCERA AVX has delivered 8.6 million dry film capacitors with an estimated cumulative lifetime of 391 billion hours. Of these, there have been zero catastrophic failures. Such a track record of safety and reliability is unparalleled and speaks to design quality while validating the core self-healing technology.

Source: KYOCERA AVX

Related Posts

Inductors

Sumida Extends Ferrite Drum Inductors Offering with Lower DCR and Wider Inductance Range

23.11.2023
12
Inductors

Toroidal Flat Wire PFC Inductors vs. Round Wire PFC Inductors; Würth Elektronik Webinar

23.11.2023
22
Filters

Quasi-Lumped Filters: Combining Filter Technologies to Create Higher-Value Compact Filters

21.11.2023
20

Upcoming Events

Nov 28
November 28 @ 12:00 - November 29 @ 14:00 EST

Microelectronic Packaging Failure Modes and Analysis

Nov 28
16:00 - 17:00 CET

Definition of component heating of power inductors in switching regulators using IEC 62024

Dec 4
20:00 - 21:00 CET

Film Capacitors: The Versatility and Stability

View Calendar

Popular Posts

  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Leakage Current Characteristics of Capacitors

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • Over-Voltage and Over-Current Protection Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • November 23 – Interconnect, Passives & Electromechanical Components Market Insights

    0 shares
    Share 0 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • What is the Difference Between X8G, X8L and X8R Ceramic Capacitor Dielectrics?

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Archive

2023
2022
2021
2020
2019
2018
2017

Symposium

Passive Components Networking Symposium

Passives e-Learning

Knowledge Blog

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.