Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    DigiKey Presents Factory Tomorrow Season 5 Video Series

    Samsung MLCCs Lineup for In-Vehicle Infotainment

    source: Samtec

    Best Practices for Cable Management in High-Speed and High-Density Systems

    Würth Elektronik Unveils Compact Common-Mode Data Lines Chokes

    Bourns Releases TCO 240 Watt USB Mini-Breaker

    Littelfuse Adds 600W Automotive TVS Diodes for High-Energy Transient Protection

    Vishay Releases Harsh Environment Robust DC-Link Film Capacitor

    Bourns Releases Automotive High Creepage and Clearance Transformer

    Bourns Unveils Metal Powder Core High Current Low DCR Shielded Power Inductor

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    DigiKey Presents Factory Tomorrow Season 5 Video Series

    Samsung MLCCs Lineup for In-Vehicle Infotainment

    source: Samtec

    Best Practices for Cable Management in High-Speed and High-Density Systems

    Würth Elektronik Unveils Compact Common-Mode Data Lines Chokes

    Bourns Releases TCO 240 Watt USB Mini-Breaker

    Littelfuse Adds 600W Automotive TVS Diodes for High-Energy Transient Protection

    Vishay Releases Harsh Environment Robust DC-Link Film Capacitor

    Bourns Releases Automotive High Creepage and Clearance Transformer

    Bourns Unveils Metal Powder Core High Current Low DCR Shielded Power Inductor

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Hybrid dc-dc converter stirs switched capacitor into buck step-down

24.8.2022
Reading Time: 2 mins read
A A

source: Electronics Weekly article

Analogue Devices has combined switched capacitor and inductive buck conversion in the same topology to reduce the size of step-down dc-dc converters.

RelatedPosts

DigiKey Presents Factory Tomorrow Season 5 Video Series

Samsung MLCCs Lineup for In-Vehicle Infotainment

Best Practices for Cable Management in High-Speed and High-Density Systems

Called LTC7821, this is “industry first hybrid step-down synchronous controller that merges a switched capacitor circuit with a synchronous step-down controller, enabling up to a 50% reduction in DC/DC converter solution size compared to traditional step-down solutions,” claims Analog. “This improvement is enabled by a thee times higher switching frequency without compromising efficiency. Alternatively, when operating at the same frequency, a LTC7821-based solution can provide up to 3% higher efficiency.”

The design appears to own a lot to the 500W LTC7820 fixed ratio dc-dc converter the firm launched in July last year.

In the LTC7821 hybrid design, the mosfets switch in pairs (see featured image diagram) with M1 and M3 together, alternating with M2 and M4 together.

The first thing this does, through switching interaction between Cfly and Cmid, is to maintain Vin/2 on the top of Cmid – affectively the input to the buck converter.

However, switching timing is controlled by a current-mode loop monitoring the inductor:

  • M1 and M3 are turned on by a latch set by the main clock, then turned off when the inductor current hits a threshold resetting the latch. M2 and M4 are then turned on.
  • Peak inductor current is controlled by the output voltage error amplifier – relative to a 0.8V on-chip (or an optional external reference).
  • M2 and M4 are kept on until the inductor current starts to reverse or the beginning of the next clock cycle.
  • M3 and M4 operate in a manner similar to traditional buck converter, with M3 hard switching and M4 soft-switching at zero voltage.

Just as with the earlier LTC7820, the LTC1821 has a start-up mode in which Cfly and Cmid are pre-charged to Vin/2 before main switching is initiated to prevent huge currents flowing. The two chips also share a totem-pole scheme (see Schottky diode chain) which supplies boot-strap voltages to the internal n-channel mosfet drivers.

The chip operates over 10-72V (80V absolute max) producing outputs from 0.9 to 33.5V with current measured in 10s of amps – depending on the external components.

LTC7821-12Vout-efficiencyIn a typical 48V to 12V 20A application, said the firm, 97% efficiency is attainable at 500kHz: “The same efficiency can only be achieved in a traditional synchronous step-down converter by switching at one-third the operating frequency, resulting in the use of much larger magnetics and output filter components.”

Switching is fixed-frequency, programmable from 200kHz to 1.5MHz.

Mosfet drivers have 1Ω outputs – low enough to drive multiple mosfets in parallel, said Analogue, and the current mode control also allows multiple LTC7821s to current-share in multi-phase parallel configurations.

Other claims for the hybrid arrangement are low EMI and reduced MOSFET stress due to the soft-switched front end.

Non-isolated intermediate bus applications are expected in power distribution, datacoms, telecoms and 48V automotive systems.

Related

Recent Posts

Samsung MLCCs Lineup for In-Vehicle Infotainment

4.9.2025
7
source: Samtec

Best Practices for Cable Management in High-Speed and High-Density Systems

4.9.2025
2

Würth Elektronik Unveils Compact Common-Mode Data Lines Chokes

3.9.2025
9

Bourns Releases TCO 240 Watt USB Mini-Breaker

3.9.2025
5

Littelfuse Adds 600W Automotive TVS Diodes for High-Energy Transient Protection

2.9.2025
9

Vishay Releases Harsh Environment Robust DC-Link Film Capacitor

2.9.2025
17

Bourns Releases Automotive High Creepage and Clearance Transformer

1.9.2025
18

Bourns Unveils Metal Powder Core High Current Low DCR Shielded Power Inductor

29.8.2025
25

Influence of Tantalum Capacitor Pellets Size on Stability During Oxide Film Formation

29.8.2025
28

Modelithics Release Discrete Components Optimization Article for RF/Microwave Designers

28.8.2025
13

Upcoming Events

Sep 16
17:00 - 18:00 CEST

EMI Shielding Challenges

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Core Materials, Permeability and Their Losses

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version