Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Molex Acquires Smiths Interconnect

    Murata Integrates Component Models into Cadence EDA Tools

    Wk 42 Electronics Supply Chain Digest

    Stackpole Introduces Automotive Thick Film Wide Termination Chip Resistors

    September 2025 ECIA US Components Sales Sentiment Continues in Optimism

    Bourns Release Automotive 4-Terminal Shunt Resistors

    Bourns Releases High Inductance Common Mode Choke

    Vishay Releases Automotive TO-220 Case 50W Thick Film Power Resistor

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Molex Acquires Smiths Interconnect

    Murata Integrates Component Models into Cadence EDA Tools

    Wk 42 Electronics Supply Chain Digest

    Stackpole Introduces Automotive Thick Film Wide Termination Chip Resistors

    September 2025 ECIA US Components Sales Sentiment Continues in Optimism

    Bourns Release Automotive 4-Terminal Shunt Resistors

    Bourns Releases High Inductance Common Mode Choke

    Vishay Releases Automotive TO-220 Case 50W Thick Film Power Resistor

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Improving Low Loss Dielectric Measurement Technique Using Vector Network Analyser

15.6.2022
Reading Time: 2 mins read
A A

Scientists from NPL have developed improvements to a technique for measuring dielectric permittivity and loss of materials at MHz frequencies. The method used is named after two NPL scientists who developed in the 1930, Hartshorn and Ward. The findings are presented in the team’s “Low loss dielectric measurements in the frequency range 1 – 70MHz by using a Vector Network Analyser” paper, recently published in Measurement Science and Technology. This method allows the permittivity and loss of a sheet of dielectric material placed between the plates of a capacitor to be determined by resonating it with a coil inductor. The value of the technique is that very low losses can be determined from measurement of small changes in Q-factor.

Historically, the Hartshorn and Ward method was used to characterise polyethylene used in undersea cable systems before the invention of fibreoptic cables. It was established that UK-made polyethylene had similar loss to imported material, with considerable benefit to the UK economy. There are still requirements for measurement of the loss of low-loss polymers used in the electronics industry. Another application is for measurement of the loss of windows that are used in high-power radiofrequency systems. These include ceramic windows used in the Joint European Torus (JET) fusion reactor to allow input of RF power to create plasmas by Ion Cyclotron Resonance Heating (ICRH). The measurements of loss are needed to demonstrate that the windows have sufficient resilience to avoid failure from overheating.

RelatedPosts

Rohde & Schwarz Introduces New Family of High Performance LCR Meters

2-Port Shunt-Through Impedance Power Integrity Measurement

Inductor Current Measurement in Switched Power Supplies

The newly-published work describes how a Hartshorn and Ward system manufactured by ERA Technology in the 1970s was adapted to use a Vector Network Analyser instead of an analogue Q-meter. It also describes how uncertainties were improved by using numerical modelling techniques to correct measurements for the effect of fringing fields around the edge of electrodes. A comprehensive measurement comparison that includes evaluations of uncertainty is included in the paper. Loss tangents smaller than 10-5 can be resolved.

Andrew Gregory, Senior Research Scientist, NPL states: “The measurement of very low dielectric loss presents unique challenges because dissipation occurring in specimens must be distinguished from other sources of dissipation in the experiment. A Hartshorn and Ward experiment was been brought into the digital age, making it more convenient to use and enabling measurement uncertainty to be reduced. I was fortunate to receive help from two guest workers, G J Hill and M A Barnett, with many years’ experience of low-loss measurement. This work has led to a comprehensive metrology paper, and an updated instrument that is now one of the facilities that we have as part of the National Measurement System.”

Related

Source: NPL UK

Recent Posts

Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

21.10.2025
3

Murata Integrates Component Models into Cadence EDA Tools

21.10.2025
2

High Energy Density Polymer Film Capacitors via Molecular and Interfacial Design

15.10.2025
25

KYOCERA AVX Expands Stacked MLCC Capacitors Offering

14.10.2025
38

Over-Voltage Protection Clippers, Clampers, Snubbers, DC Restorers

13.10.2025
29

Silicon Capacitors Market: Shaping the Foundation for Next-Gen Miniaturization Electronics

10.10.2025
66

Enhancing Energy Density in Nanocomposite Dielectric Capacitors

9.10.2025
36

Advances in the Environmental Performance of Polymer Capacitors

8.10.2025
66

Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

8.10.2025
31

Paumanok Releases Capacitor Foils Market Report 2025-2030

7.10.2025
29

Upcoming Events

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Oct 28
8:00 - 15:00 CET

Power Up Your Design: SN6507 and the Ready-to-Use Development Kit

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version