Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Overvoltage and Transient Protection for DC/DC Power Modules

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    Littelfuse Releases TMR Switches with Ultra-Low Power Magnetic Sensing

    Skeleton Opens SuperBattery Factory in Finland 

    Kyocera Releases Ultra-Compact Low Voltage Clock Oscillators

    Murata Expands High Rel NTC Thermistors in Compact 0603M Size

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Wk 45 Electronics Supply Chain Digest

    Transformer Safety IEC 61558 Standard

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Overvoltage and Transient Protection for DC/DC Power Modules

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    Littelfuse Releases TMR Switches with Ultra-Low Power Magnetic Sensing

    Skeleton Opens SuperBattery Factory in Finland 

    Kyocera Releases Ultra-Compact Low Voltage Clock Oscillators

    Murata Expands High Rel NTC Thermistors in Compact 0603M Size

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Wk 45 Electronics Supply Chain Digest

    Transformer Safety IEC 61558 Standard

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Incremental Use of Car Radars Raise Interference Concerns

3.1.2020
Reading Time: 4 mins read
A A

Less expensive, computationally less demanding, and impervious to almost all environmental conditions, radar technology offers a compelling advantage in many automotive safety applications. Little wonder, then, that it accounts for more than one third of the automotive collision avoidance sensor market, according to Grandview Research. On the other hand as the usage of radar technology in cars increases, so does the potential for increased levels of interference that can impact detection performance.

Key applications where radar is currently being used are in adaptive cruise control, blind spot detection, forward collision warning, intelligent parking assistance, autonomous emergency braking, and other advanced driver-assistance systems (ADAS).

RelatedPosts

Overvoltage and Transient Protection for DC/DC Power Modules

Choosing the Right Capacitor: The Importance of Accurate Measurements

Littelfuse Releases TMR Switches with Ultra-Low Power Magnetic Sensing

And its market share is on the rise: The National Highway Traf­fic Safety Administration (NHTSA) announced that all automakers will supply collision avoidance by 2022, and further development of autonomous vehicles will present even more opportunities.

But as the usage of radar technology in cars increases—and thereby the number of sensors operating in proximity to each other at the same time—so does the potential for increased levels of interference. And interference can impact the very thing that is critical to get right in safety applications: detection performance.

Concern over this specific issue prompted NHTSA to conduct a study on radar congestion. Published in September 2018, the results of the study show that levels of interference based on operation of current systems in congested environments will be significant.

Here’s how it works: Assume, for example, two cars approach an intersection, facing each other. Both cars have a front-looking radar sensor operating in the 76-77 GHz band. Both sensors are expected to send signals in the 76-77 GHz band, and the reflected signals from the objects (metal body of the other car, in this case) come back to each sensor for processing to confirm the detection of the car in the front.

Interference or cross-talk occurs when one sensor captures signals from the other sensor along with its own reflections from the object. If the interference is ignored, the result could be a missed object, false detection, or the manifestation of a ghost target, which is a reflection of the actual target.

The NHTSA report noted that “Up to this point, attention has been paid to making the technology operate, and not much consideration has been given to the mutual impact of the highway infrastructure and safety systems when deployed.”

But that doesn’t mean various strategies are not under active investigation.

Today component suppliers and radar sensor designers are looking at different approaches to detect and mitigate interference. The report noted several, including:

  • A technique focused on detecting interference and repairing receiver results in time domain
  • Stretch processing, which lowers the systems’ overall signal-to-noise ratio
  • Digital Beam Forming, which allows the radar to restrict the receiver’s spatial field of view

“As the number of radar sensors per car increases and the number of cars with ADAS functionality increases, TI also agrees that there would be potential risk of interference or cross talk,” said Sneha Narnakaje, Business Manager and Director of Marketing, Automotive Radar, at Texas Instruments.

Narnakaje noted that there are approaches within region/country specific regulation bodies to deploy radar more efficiently depending on the application. “The FCC has expanded the spectrum available for vehicular radars, to include the entire 76-81 GHz band, with 76-77 GHz regulated for moving vehicles and ADAS functions,” Narnakaje said.

For long range detections and highway conditions, 76-77 GHz could be used, she noted, while for short range detections and urban conditions, 77-81 GHz could be used. “Traffic management or monitoring could use the unlicensed 60 GHz band, so the sensor usage is distributed across frequency bands and the environment becomes less prone to interference or crosstalk. Even the sensor installation orientation on the car will also play role in the interference environment.”

She noted there are also developments in chip architectures targeted at helping to mitigate interference.

TI, for example, said there are performance advantages to using its complex-baseband architecture in Frequency Modulated Continuous Waveform (FMCW) radar systems. ADAS uses this type of sensor, which is less prone (although not immune) to interference due to the continuous waves.

The technology was designed mainly for RF performance reasons, but TI engineers found a way to exploit this architecture to detect interference more accurately and efficiently and deal with it.

And that’s exactly what industry is focusing its efforts on now.

Related

Source: Fierce Electronics

Recent Posts

Murata Expands High Rel NTC Thermistors in Compact 0603M Size

12.11.2025
9

Capacitor Lead Times: October 2025

6.11.2025
100

Coilcraft Introduces Ultra-Low Loss Shielded Power Inductors

6.11.2025
26

Murata Expands High Cutoff Frequency Chip Common Mode Chokes

5.11.2025
16

Murata Expands Automotive Metal Frame Y2/X1 Safety MLCC Capacitors to 500V

30.10.2025
49

Samsung Releases Automotive Molded 2220 1kV C0G MLCC

23.10.2025
71

VINATech Offers Smallest 100µF Al-Hybrid Capacitor

23.10.2025
51

Vishay Unveils SMD 1200V PTC Thermistors in Compact Size

23.10.2025
14

Bourns Unveils Automotive 3 Watt Gate Driver Transformer

22.10.2025
11

Upcoming Events

Dec 2
December 2 @ 12:00 - December 4 @ 14:15 CET

Microwave Packaging Technology

Dec 9
December 9 @ 12:00 - December 11 @ 14:15 EST

Space and Military Standards for Hybrids and RF Microwave Modules

Dec 10
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version