Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    DigiKey Announces Back to School Giveaway to Empower Tomorrow’s Innovators

    Ripple Steering in Coupled Inductors: SEPIC Case

    TDK Releases Low Loss Thin-Film Inductors for AI Data Centers

    Samsung Releases Ultra–High-Capacitance 4.7uF 2.5V MLCC in 0201 for AI GPU

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Vishay Releases High Current 3.3 V to 36 V ESD Protection Diodes

    TDK Extends SMT Gate Drive Transformers to 1000 V

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    DigiKey Announces Back to School Giveaway to Empower Tomorrow’s Innovators

    Ripple Steering in Coupled Inductors: SEPIC Case

    TDK Releases Low Loss Thin-Film Inductors for AI Data Centers

    Samsung Releases Ultra–High-Capacitance 4.7uF 2.5V MLCC in 0201 for AI GPU

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Vishay Releases High Current 3.3 V to 36 V ESD Protection Diodes

    TDK Extends SMT Gate Drive Transformers to 1000 V

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Isabellenhütte Offer Shunt Resistor Solution for e-mobility Current Measurements

3.5.2019
Reading Time: 2 mins read
A A

Source: Open PR news, Isabellenhütte news

The unique feature of the new BAC shunt from Isabellenhütte is the small circuit board attached to the shunt. The board includes a connector for an easy connection of the measurement connection. Users are ensured a reliable measurement of signals and are spared an additional process step during production.
The concept of this innovative precision resistor allows for a much more flexible and efficient signal transmission than with conventional shunts. The BAC is delivered complete with mini-circuit board with access to the sense terminals via a plug connector for the current measurement. Instead of using complex solutions, such as welded-on terminal pins, flex cables or a connection to the evaluation electronics on the main circuit board, the measuring signal can be tapped directly by the BAC resistor. The connector is used to tap the voltage values in the customer’s higher-level systems.

RelatedPosts

DigiKey Announces Back to School Giveaway to Empower Tomorrow’s Innovators

Ripple Steering in Coupled Inductors: SEPIC Case

TDK Releases Low Loss Thin-Film Inductors for AI Data Centers

The resistance values of the BAC are 0.1 mOhm (320 A). Another low-ohmic version is designed for current measurements up to 550 A (0.05 mOhm). This shunt is suitable for power ratings up to 15 W. Other resistance values are also possible.

Leaner production process and more flexible design

In the range of small to medium quantities in particular, the BAC current sensor offers significant cost advantages due to its simplified connection process. It is no longer necessary, for example, to weld on pins. The BAC’s main application is current measurement for electronic battery management systems in forklifts, electric scooters as well as other hybrid and electric vehicles. Other applications include current measurements in welding equipment.

Users have more options when designing their products. Since the measuring signals are not evaluated on the application’s printed circuit board, the BAC shunt does not necessarily have to be placed on the electronics.

High-precision and long-term stable measurement results

Another advantage of the shunt design with circuit board is the high-precision, long-term stable measurement results. MANGANIN® a special alloy designed by Isabellenhütte forms the resistance element of the BAC, which is electron beam welded between two Copper strips. MANGANIN® is characterized by an extremely low temperature dependence. The temperature coefficient (TCR) for the BAC series thus lies in the range 100 ppm/K. By comparison, Copper has a TCR of 4,000 ppm/K. So, if the sense pins are eliminated and the measuring signal can be tapped directly on the underside of the circuit board by the Manganese resistance alloy, then the negative impact of Copper on the temperature coefficient is also largely eliminated.

Customer-specific designs of the standard product

The BAC shunt is a standard passive component, but can be customized for the respective application, for example, the resistance values, the physical size or the selection of plug connectors. In order to avoid transfer resistances due to oxidation, a version with Tin-plated or Nickel-plated Copper connections can also be supplied. Isabellenhütte guarantees a precise measurement and permanent transmission of measuring signals throughout the entire life cycle and therefore also the process reliability of the entire component.

Related

Recent Posts

Vishay Releases High Current 3.3 V to 36 V ESD Protection Diodes

25.8.2025
11

Stackpole Unveils Metal Element High Current Chip Jumpers

19.8.2025
37

Vishay Releases Miniature SMD Trimmers for Harsh Environments

14.8.2025
16

Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

13.8.2025
13

Stackpole Extends Voltage of High Temp Chip Resistors

13.8.2025
11

High Voltage MLCCs Meeting the Growing Demand for Efficiency in Power Conversion

12.8.2025
159

TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

7.8.2025
37

Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

6.8.2025
50

Vishay Releases High Saturation 180C Automotive Inductors

6.8.2025
27

Bourns Unveils High Reliability Compact Micro Encoders

5.8.2025
10

Upcoming Events

Sep 3
15:30 - 17:30 CEST

How to Choose Your Magnetic Supplier

Sep 16
17:00 - 18:00 CEST

EMI Shielding Challenges

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Core Materials, Permeability and Their Losses

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version