Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Würth Elektronik Releases High-Frequency Connectors for Antenna Cables

    Murata Releases First High-Frequency XBAR Filter for Next-Gen Networks

    Vishay NTC Immersion Thermistor Delivers Fast Response in Liquid Cooled Automotive Systems

    Wk 27 Electronics Supply Chain Digest

    VINATech Supercapacitors Enhance Automotive Safety with Reliable E-Latch Emergency Power

    Exxelia Unveils Advanced Components for the Medical Device Industry

    TDK Introduces High Current 80VDC Board-Mount EMI Filters

    Bourns Releases High Heat Tolerant TO-227 Thick Film Resistor

    TDK Increases Current Ratings of Automotive Thin-Film Power Inductors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Würth Elektronik Releases High-Frequency Connectors for Antenna Cables

    Murata Releases First High-Frequency XBAR Filter for Next-Gen Networks

    Vishay NTC Immersion Thermistor Delivers Fast Response in Liquid Cooled Automotive Systems

    Wk 27 Electronics Supply Chain Digest

    VINATech Supercapacitors Enhance Automotive Safety with Reliable E-Latch Emergency Power

    Exxelia Unveils Advanced Components for the Medical Device Industry

    TDK Introduces High Current 80VDC Board-Mount EMI Filters

    Bourns Releases High Heat Tolerant TO-227 Thick Film Resistor

    TDK Increases Current Ratings of Automotive Thin-Film Power Inductors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

KEMET Releases New Series of High Temperature & High Humidity Aluminum Polymer SMD Capacitors

4.2.2021
Reading Time: 3 mins read
A A

High demand in power management and miniaturization requirements in combination with extreme harsh environmental conditions are today some of challenges that designers need to solve. KEMET is expanding the AO-CAP ® Aluminum Polymer SMD capacitor offering with new A798 Series. The new series was developed and qualified with the news material setting and process flows that allow a life endurance specification of 125ºC and a humidity bias capability of 85ºC/85% relative humidty at rated voltage up to 1000h.

KEMET A798 Aluminum Organic Capacitor AO-CAP® is a solid state aluminum capacitor. The cathode is a solid conductive organic polymer, which results in very low ESR and improved capacitance retention at high frequency when compared to a traditional anode systems.

RelatedPosts

NIC Components Extends SMD High Voltage MLCC Offering

Stackpole Offers RoHS Compliant Lead-Free Thick Film Chip Resistors

Smiths Interconnect’s SMD Power Resistors with Heat Sink Qualified to Space Flights

The construction is based in a stacking of aluminum elements. The surface of each aluminum sheet is covered with an oxide dielectric and a conductive polymer. Each element serves as individual capacitive elements and stacked in parallel. External layers are finished with carbon and silver. The construction and a photo from a element are presented in figures 1 and 2.

Figure 1. KEMET A798 Aluminum Organic Capacitor (AO-CAP®) Basic Construction
Figure 2. Aluminum Element foil photo

The stacking of the individual elements is what gives rise to the large capacitance values of MnO2 and the very low resistivity of silver helps to minimize ESR.

Figure 3 – Schemetic Construction of A798 capacitor

Unlike their tantalum counterparts, AO-CAP® may be operated at steady state voltages up to 100% of rated voltage without the need to derate. This characteristic is due to the low stress interface with dielectric and polymer counter electrode and is a favorable reliability parameter.

Since there is no liquid electrolyte, the A798 offers long operational lifetimes, low ESR, and high operational temperatures.

The ESR in frequency shows a boarder  curve with values < 10mOhm and minimal variation with temperature.

Figure 4 – The K-SIM graphic (https://ksim3.kemet.com/capacitor-simulation)

 Enhancements to the design and selected material upgrades were introduced to deliver 1,000 hours at 85°C/85% RH rated voltage and 125°C Endurance Life and Storage. The initial product portfolio is limited to two part number suitable to support low voltage power rails in typical DC/DC converters, notebook PCs, telecommunications, displays, and industrial applications with harsh humidity and temperature requirements. The new part numbers are described in Table 1.

Conclusions

All this means that AO-CAP can deliver very low ESR performance across frequency while maintaining a steady amount of capacitance. This results in minimized losses especially in switching regulators. Minimizing losses is particularly critical in battery-operated devices where up-time is crucial. The abundance of aluminum contributes to a very steady price and supply chain of AO-CAP. For more information please visit https://ec.kemet.com/polymer.

Related

Source: Kemet Electronics

Recent Posts

Murata Releases First High-Frequency XBAR Filter for Next-Gen Networks

8.7.2025
9

Würth Elektronik Present Efficient Motor Controller Evaluation Kit

8.7.2025
8

VINATech Supercapacitors Enhance Automotive Safety with Reliable E-Latch Emergency Power

7.7.2025
28

Exxelia Unveils Advanced Components for the Medical Device Industry

9.7.2025
43

TDK Introduces High Current 80VDC Board-Mount EMI Filters

2.7.2025
26

Bourns Releases High Heat Tolerant TO-227 Thick Film Resistor

2.7.2025
19

TDK Increases Current Ratings of Automotive Thin-Film Power Inductors

1.7.2025
23

Sumida Announces New DC Common Mode Choke Coil Series

1.7.2025
15

KYOCERA AVX Releases New 3dB Hybrid Couplers

1.7.2025
15

SCHURTER Unveils High Voltage Fuses for EV Applications

30.6.2025
10

Upcoming Events

Jul 23
13:00 - 14:00 CEST

PCB design for a Smartwatch

Jul 29
16:00 - 17:00 CEST

Impact of Elevated Voltage and Temperature on Molded Power Inductors in DC/DC converters

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version