Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Power Inductors Future: Minimal Losses and Compact Designs

    Bourns Unveils Automotive 3 Watt Gate Driver Transformer

    Murata Opens EMC Test Lab in Nuremberg to Enhance Automotive Support

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Molex Acquires Smiths Interconnect

    Murata Integrates Component Models into Cadence EDA Tools

    Wk 42 Electronics Supply Chain Digest

    Stackpole Introduces Automotive Thick Film Wide Termination Chip Resistors

    September 2025 ECIA US Components Sales Sentiment Continues in Optimism

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Power Inductors Future: Minimal Losses and Compact Designs

    Bourns Unveils Automotive 3 Watt Gate Driver Transformer

    Murata Opens EMC Test Lab in Nuremberg to Enhance Automotive Support

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Molex Acquires Smiths Interconnect

    Murata Integrates Component Models into Cadence EDA Tools

    Wk 42 Electronics Supply Chain Digest

    Stackpole Introduces Automotive Thick Film Wide Termination Chip Resistors

    September 2025 ECIA US Components Sales Sentiment Continues in Optimism

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Knowles Cornell Dubilier Introduced 9V Supercapacitor Module

12.3.2024
Reading Time: 3 mins read
A A

Knowles Precision Devices, a segment of Knowles Corporation, a leading global supplier of high performance components and solutions, announced its latest Electric Double Layer Capacitor (EDLC), or supercapacitor, modules are now available.

Based on Knowles’ Cornell Dubilier brand DGH and DSF Series supercapacitors, these cutting-edge capacitors use a three-cell package for higher operating voltages and printed circuit board space savings.

RelatedPosts

Knowles Releases High Q Non-Magnetic X7R MLCCs for Medical Imaging

Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

Knowles Releases Inductors for Mission-Critical RF Applications

Knowles Corporation acquired Cornell Dubilier in 2023 to expand its offering of high-quality film, electrolytic and mica capacitors. Like other supercapacitors offered by Knowles’ Cornell Dubilier brand, the new devices provide very fast power discharge that cannot be matched by conventional capacitors or batteries.

That large capacity makes it possible to support brief power interruptions, supplement batteries, or even be used in place of batteries in many applications. These supercapacitors are ideal for applications including solar and wind energy harvesting, mechanical actuators, AGV (Automated Guided Vehicles), EV transportation power, smart utility meters, IoT, pulse battery pack alternatives, memory backup, battery/capacitor hybrids, UPS systems, emergency lighting, LED power, solar lighting or anywhere that significant energy storage is needed.

The new supercapacitors offer a notable jump in voltage rating over typical radial-mount supercapacitors, up to 9.0 WVDC. A key feature of the DGH and DSF Series additions is the unique three-cell radial-leaded package. Compared to single or dual-cell supercapacitors, the compact design saves space and allows for much higher operating voltages, making them ideal for a wider range of applications. Both series include capacitance values from 0.33 to 5 Farads. Multiple devices can be banked for even higher capacitance or voltage.

Another notable advantage of these supercapacitors is their internal cell balancing. This feature ensures optimal performance and serves as a production time saver. DGH and DSF Series three-cell supercapacitors are also more cost-effective than other options currently available.

From a performance standpoint, both series offer high energy density and extremely low self-discharge rates, benefiting energy storage applications. Both series are also tolerant of wide-ranging operational environments, with operating temperature ranges from -40 °C to +65 °C for DGH 8.1V/DSF 9.0V and -40 °C to +85 °C for DGH 6.9V/DSF 7.5V.

Low equivalent series resistance (ESR) minimizes energy loss for high efficiency. ESR varies by part but is lower than most capacitors with similar storage capabilities. These supercapacitors are designed to withstand over 500,000 charge/discharge cycles, ensuring long-lasting performance without performance degradation. Operating life is expected to be up to 10 years.

Features

  • More cost-effective than competition
  • Ultra-low self-discharge current
  • Wide temperature range
  • Higher energy density
  • Higher power density
  • Low ESR
  • 500,000+ charge/discharge cycles typical

Related

Source: Knowles Precision Devices

Recent Posts

Bourns Unveils Automotive 3 Watt Gate Driver Transformer

22.10.2025
4

Murata Integrates Component Models into Cadence EDA Tools

21.10.2025
24

Stackpole Introduces Automotive Thick Film Wide Termination Chip Resistors

20.10.2025
6

Bourns Release Automotive 4-Terminal Shunt Resistors

17.10.2025
18

Bourns Releases High Inductance Common Mode Choke

16.10.2025
18

Vishay Releases Automotive TO-220 Case 50W Thick Film Power Resistor

16.10.2025
13

High Energy Density Polymer Film Capacitors via Molecular and Interfacial Design

15.10.2025
25

Bourns Releases High Clearance and Creepage 1500VDC Power Transformer

15.10.2025
23

KYOCERA AVX Expands Stacked MLCC Capacitors Offering

14.10.2025
41

YAGEO Unveils Compact 3.6kW LLC Transformer for OBC EV Charging

13.10.2025
140

Upcoming Events

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Oct 28
8:00 - 15:00 CET

Power Up Your Design: SN6507 and the Ready-to-Use Development Kit

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version