Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    May 2025 Interconnect, Passives and Electromechanical Components Market Insights

    HIROSE Releases New Field-Assembly Communication Connectors

    Coilcraft Unveils 165C High-Temperature Coupled Inductors

    Bourns Releases SMD NTC Thermistors for Thermal Sensing

    Wk 22 Electronics Supply Chain Digest

    Samsung Electro-Mechanics High Capacitance MLCCs for ADAS SoCs

    Murata Expands its Automotive Common Mode Choke Coils to 150C and High Current Capability

    Bourns Releases New Current Transformer

    Skeleton Releases GrapheneGPU to Reduce AI Energy Consumption by 44% and Boosts Power by 40%

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    May 2025 Interconnect, Passives and Electromechanical Components Market Insights

    HIROSE Releases New Field-Assembly Communication Connectors

    Coilcraft Unveils 165C High-Temperature Coupled Inductors

    Bourns Releases SMD NTC Thermistors for Thermal Sensing

    Wk 22 Electronics Supply Chain Digest

    Samsung Electro-Mechanics High Capacitance MLCCs for ADAS SoCs

    Murata Expands its Automotive Common Mode Choke Coils to 150C and High Current Capability

    Bourns Releases New Current Transformer

    Skeleton Releases GrapheneGPU to Reduce AI Energy Consumption by 44% and Boosts Power by 40%

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

M3 Technology Receives EE Awards for its Supercapacitor Power Management Solution

14.12.2022
Reading Time: 3 mins read
A A

Taiwan based M3 Technology has received the Most Promising Product award at EE Awards Asia 2022 for its MT2600 Supercapacitor Power Manager for Backup Power Applications.

Supercapacitors coming to the fore

RelatedPosts

May 2025 Interconnect, Passives and Electromechanical Components Market Insights

HIROSE Releases New Field-Assembly Communication Connectors

Coilcraft Unveils 165C High-Temperature Coupled Inductors

According to Bo Yang, R&D Director at M3 Technology, MT2600 is basically a supercapacitor charging and discharging management IC that offers system level protection.

“As we see it, supercapacitors, after several decades of development, finally are reaching a level of performance in terms of power density, energy density, reliability, cost—to compete with the lithium-ion battery,” says Yang. “We saw that opportunity so we developed this product, which can be used for a lot of applications, including automotive and mobile devices. Right now, a lot of mobile devices are beginning to use supercapacitors as their energy storage.”

Yang adds that the supercapacitor is becoming a major player in energy storage applications. “It has a lot of advantages compared to battery: it has a much longer lifetime, it can be charged like half a million times without losing any performance, and it can tolerate much wider temperature ranges,” he says. “And it’s a much safer and more reliable energy storage.”

He notes that because of those features, more and more manufacturers are using supercapacitors. The challenge is that there are not enough power management devices targeted at this these devices. “When you look at some of the users of supercapacitors, they have to use discretes like resistors and diodes to charge or balance the capacitor, or to discharge the capacitor,” says Yang. Which, in the end, will cost more and occupy a lot of space.

“Another thing is that those solutions normally have a lot of self-discharge. Basically, you try to store energy in the supercapacitor to use later, but after you add all these protection circuit, and other bells and whistles, such circuits begin to drain the supercapacitor already—your stored energy is already being used by those components already. That’s another problem,” explains Yang.

On top of it, system protection is another issue. “When you look at how customers use supercapacitors, they bring to mind a lot of considerations. Normally, for example, they use USB to charge these supercapacitors. When you use USB, you plug it in, you have a lot of transient voltages and transient currents—and as such, you need to have a lot of other components to protect the supercapacitors from damages. Those things are extra—you have to add those things to keep the system safe,” says Yang.

M3 Technology’s MT2600 addresses these issues. “What we are trying to solve is, first, the management of supercapacitors—we want it to be very, very energy efficient. We don’t want to waste any energy by our IC,” says Yang. “Another thing is we try to integrate the protection inside our IC. Basically, MT2600 is a one-chip solution—it provides all the input overcurrent/overvoltage and output overcurrent protection, while at the same time managing the charged supercapacitor.”

Why MT2600 is unique

According to Yang, there are already supercapacitor management ICs in the market.

“But I think MT2600 is really unique in that it integrates more system functions,” he says. “MT2600 is not only a supercapacitor charging/discharging device, but it also has a system level protection from the input side, OVP/OCP, reverse blocking, all kinds of situation. And all these functions are put into this chip.

He says other existing supercapacitor charger require a lot of external components and circuitry to create a total solution. “MT2600 is a one-chip solution—you just need several passive components, and a supercapacitor, and you have a power system to power your system with backup energy capability, and this is complete with all the protection. This device is really the most integrated solution for this kind of system,” says Yang.

Meng adds that another benefit of using the MT2600 is that it only draws less than 2µA from the supercapacitor. “So, the energy that is being supplied to the system is not being drained by this chip. That’s the benefit of this linear charging and discharging architecture of the supercapacitor,” he says. “Other companies use a switching charger, which charges the supercapacitor and discharges it. That, by itself, is going to consume several milliamps of current, so that’s already like 1,000x difference.”

Related

Source: EE Times Asia

Recent Posts

Samsung Electro-Mechanics High Capacitance MLCCs for ADAS SoCs

30.5.2025
27

Skeleton Releases GrapheneGPU to Reduce AI Energy Consumption by 44% and Boosts Power by 40%

29.5.2025
39

VINATech Expands Aluminum Capacitor Portfolio with Acquisition of Enesol

28.5.2025
68

Supercapacitors Benefits in Industrial Valve Fail-Safe Control Systems

26.5.2025
31

Samsung Electro-Mechanics Releases High-Capacitance MLCCs for AI Server Applications

21.5.2025
62

Capacitor Ripple Current Testing: A Design Consideration

21.5.2025
75

Developing Low Inductance Film Capacitor using Bode 100 Analyzer

15.5.2025
58

YAGEO Extends Rectangular Aluminum Electrolytic Capacitor Family

15.5.2025
80

Dr. Tomas Zednicek Vision for Europe 2025 Passive Electronics Market

14.5.2025
81

Exxelia Power Film Capacitors Support Critical Systems Across Various Industries

13.5.2025
33

Upcoming Events

Jun 4
11:00 - 12:00 CEST

Würth Elektronik PCB Production in Asia

Jun 24
17:00 - 18:00 CEST

Ultra-Compact and Efficient Switched-Capacitor Power Converters

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0
  • Coefficient of Linear Thermal Expansion on Polymers Explained

    0 shares
    Share 0 Tweet 0
  • Wk 22 Electronics Supply Chain Digest

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version