• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication
The star-like ‘kagome’ molecular structure of the 2D metal-organic material results in strong electronic interactions and non-trivial magnetic properties (left: STM image, right: non-contact AFM). credit: Monash University

Magnetism Generated by Star-like Arrangement of Molecules in 2D Organic Materials

14.9.2021

Vishay Introduced Leadless NTC Thermistor Dies with Versatile Mounting Options

29.6.2022

CAP-XX Expanding its Supercapacitor Portfolio by Lithium-Ion Capacitors

29.6.2022

NA Component Sales Continue to Show Positive Growth

29.6.2022

Bourns Releases Semi-shielded Power Inductors

28.6.2022
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Vishay Introduced Leadless NTC Thermistor Dies with Versatile Mounting Options

    CAP-XX Expanding its Supercapacitor Portfolio by Lithium-Ion Capacitors

    NA Component Sales Continue to Show Positive Growth

    Bourns Releases Semi-shielded Power Inductors

    KYOCERA AVX Launches New Interactive Component Search Tool

    YAGEO Presents Reverse Geometry MLCC with Reduced ESL

    Effects of Harsh Environmental Conditions on Film Capacitors

    Waveguides and Transmission Lines Explained

    Electron microscope images show the precise atom-by-atom structure of a barium titanate (BaTiO3) thin film sandwiched between layers of strontium ruthenate (SrRuO3) metal to make a tiny capacitor. (Credit: Lane Martin/Berkeley Lab)

    Researchers Developed BaTiO3 Ultrathin Ceramic Capacitors for Microchips

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Effects of Harsh Environmental Conditions on Film Capacitors

    Common-mode Choke Parameters Explained; WE Webinar

    Ceramic Capacitors Loss Modelling under High DC Bias Voltage and High Current Stress

    MLCC Case Size Impact to Parameters

    NTC Thermistor in Fire Alarm Application LTSpice Simulation

    MLCC Ageing; Samsung Video

    Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

    Coverlay – More than a Flexible Soldermask Substitute; WE Webinar

    Soldering THT Components by SMD Reflow Assembly; WE Webinar

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Vishay Introduced Leadless NTC Thermistor Dies with Versatile Mounting Options

    CAP-XX Expanding its Supercapacitor Portfolio by Lithium-Ion Capacitors

    NA Component Sales Continue to Show Positive Growth

    Bourns Releases Semi-shielded Power Inductors

    KYOCERA AVX Launches New Interactive Component Search Tool

    YAGEO Presents Reverse Geometry MLCC with Reduced ESL

    Effects of Harsh Environmental Conditions on Film Capacitors

    Waveguides and Transmission Lines Explained

    Electron microscope images show the precise atom-by-atom structure of a barium titanate (BaTiO3) thin film sandwiched between layers of strontium ruthenate (SrRuO3) metal to make a tiny capacitor. (Credit: Lane Martin/Berkeley Lab)

    Researchers Developed BaTiO3 Ultrathin Ceramic Capacitors for Microchips

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Effects of Harsh Environmental Conditions on Film Capacitors

    Common-mode Choke Parameters Explained; WE Webinar

    Ceramic Capacitors Loss Modelling under High DC Bias Voltage and High Current Stress

    MLCC Case Size Impact to Parameters

    NTC Thermistor in Fire Alarm Application LTSpice Simulation

    MLCC Ageing; Samsung Video

    Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

    Coverlay – More than a Flexible Soldermask Substitute; WE Webinar

    Soldering THT Components by SMD Reflow Assembly; WE Webinar

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Magnetism Generated by Star-like Arrangement of Molecules in 2D Organic Materials

14.9.2021
Reading Time: 4 mins read
0 0
The star-like ‘kagome’ molecular structure of the 2D metal-organic material results in strong electronic interactions and non-trivial magnetic properties (left: STM image, right: non-contact AFM). credit: Monash University

The star-like ‘kagome’ molecular structure of the 2D metal-organic material results in strong electronic interactions and non-trivial magnetic properties (left: STM image, right: non-contact AFM). credit: Monash University

0
SHARES
36
VIEWS

A 2D nanomaterial consisting of organic molecules linked to metal atoms in a specific atomic-scale geometry shows non-trivial electronic and magnetic properties due to strong interactions between its electrons.

A new study, published today, shows the emergence of magnetism in a 2D organic material due to strong electron-electron interactions; these interactions are the direct consequence of the material’s unique, star-like atomic-scale structure.

RelatedPosts

Vishay Introduced Leadless NTC Thermistor Dies with Versatile Mounting Options

CAP-XX Expanding its Supercapacitor Portfolio by Lithium-Ion Capacitors

NA Component Sales Continue to Show Positive Growth

This is the first observation of local magnetic moments emerging from interactions between electrons in an atomically thin 2D organic material.

The findings have potential for applications in next-generation electronics based on organic nanomaterials, where tuning of interactions between electrons can lead to a vast range of electronic and magnetic phases and properties.

STRONG ELECTRON-ELECTRON INTERACTIONS IN A 2D ORGANIC KAGOME MATERIAL

The Monash University study investigated a 2D metal-organic nanomaterial composed of organic molecules arranged in a kagome geometry, that is, following a ‘star-like’ pattern.

The 2D metal-organic nanomaterial consists of dicyanoanthracene (DCA) molecules coordinated with copper atoms on a weakly-interacting metal surface (silver).

By means of careful and atomically precise scanning probe microscopy (SPM) measurements, the researchers found that the 2D metal-organic structure – whose molecular and atomic building blocks are by themselves non-magnetic – hosts magnetic moments confined at specific locations.

Theoretical calculations showed that this emergent magnetism is due to strong electron-electron Coulomb repulsion given by the specific 2D kagome geometry.

“We think that this can be important for the development of future electronics and spintronics technologies based on organic materials, where tuning of interactions between electrons can lead to control over a wide range of electronic and magnetic properties”, says FLEET CI A/Prof Agustin Schiffrin.

DIRECT PROBING OF MAGNETISM VIA THE KONDO EFFECT

The electrons of 2D materials with a kagome crystal structure can be subject to strong Coulomb interactions due to destructive wavefunction interference and quantum localisation, leading to a wide range of topological and strongly correlated electronic phases.

Confirmation of the Kondo effect, via scanning tunneling spectroscopy measurements of density of electronic states, confirms the presence of local magnetism in the 2D metal-organic framework. credit: Monash University

Such strong electronic correlations can manifest themselves via the emergence of magnetism, and, until now, have not been observed in atomically-thin 2D organic materials. The latter can be beneficial for solid-state technologies owing to their tunability and self-assembly capability.

In this study, magnetism resulting from strong electron-electron Coulomb interactions in a 2D kagome organic material was revealed via the observation of the Kondo effect.

“The Kondo effect is a many-body phenomenon that occurs when magnetic moments are screened by a sea of conduction electrons. For example, from an underlying metal,” says lead author and FLEET member Dr Dhaneesh Kumar. “And this effect can be detected by SPM techniques”.

“We observed the Kondo effect, and from there concluded that the 2D organic material must host magnetic moments. The question then became ‘where does this magnetism come from?’”

Theoretical modelling by Bernard Field and colleagues unambiguously showed that this magnetism is the direct consequence of strong Coulomb interactions between electrons. These interactions appear only when we bring the normally non-magnetic parts into a 2D kagome metal-organic framework. These interactions hinder electron pairing, with spins of unpaired electrons giving rise to local magnetic moments.

“Theoretical modelling in this study offers a unique insight into the richness of the interplay between quantum correlations, and the topological and magnetic phases. The study provides us with a few hints on how these non-trivial phases can be controlled in 2D kagome materials for potential applications in path-breaking electronics technologies,” says FLEET CI A/Prof Nikhil Medhekar.

THE STUDY

“Manifestation of Strongly Correlated Electrons in a 2D Kagome Metal-Organic Framework” was published in Advanced Functional Materials in September 2021. (DOI: 10.1002/adfm.202106474)

The research team consisted of FLEET experimentalists and theoreticians from Monash University’s School of Physics & Astronomy and Department of Materials Science & Engineering.

Source: ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University

Related Posts

Aerospace & Defence

NA Component Sales Continue to Show Positive Growth

29.6.2022
10
Inductors

Bourns Releases Semi-shielded Power Inductors

28.6.2022
7
Capacitors

KYOCERA AVX Launches New Interactive Component Search Tool

27.6.2022
29

Popular Posts

  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0

Newsletter Subscription

 

Archive

2022
2021
2020
2019
2018
2017

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.