Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Understanding Inductor Dot Markings and Their Application in LTspice

    Exxelia Offers High-Q RF Microwave Capacitors for High Reliability Applications

    Premo Releases PLC Transformer for EV and Smart Grid Applications

    Wk 29 Electronics Supply Chain Digest

    June 2025 ECST Components Survey Delivers Stunning Results

    Rubycon Extends Capacitance of Polymer Hybrid Aluminum Capacitors

    VINATech Partner with ONiO to Develop Batteryless IoT Power Architecture

    Knowles Releases Inductors for Mission-Critical RF Applications

    Bourns Unveils Smallest Automotive Grade Thick Film Resistors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Understanding Inductor Dot Markings and Their Application in LTspice

    Exxelia Offers High-Q RF Microwave Capacitors for High Reliability Applications

    Premo Releases PLC Transformer for EV and Smart Grid Applications

    Wk 29 Electronics Supply Chain Digest

    June 2025 ECST Components Survey Delivers Stunning Results

    Rubycon Extends Capacitance of Polymer Hybrid Aluminum Capacitors

    VINATech Partner with ONiO to Develop Batteryless IoT Power Architecture

    Knowles Releases Inductors for Mission-Critical RF Applications

    Bourns Unveils Smallest Automotive Grade Thick Film Resistors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Mitigating Vacuum RF Multipaction in Space Systems

9.2.2023
Reading Time: 3 mins read
A A

This Knowles Precision Devices’s article explains vacuum RF multipaction issues in space systems and how to mitigate this.

When developing mission-critical space applications such as low Earth orbit (LEO) satellites or equipment designed for Mars missions, there are special considerations you must make if you will be operating your RF circuits in a vacuum. This is because when pressure in the vacuum is below 10-2 Torr, a potentially catastrophic phenomenon in RF circuits called multipaction is possible.

RelatedPosts

Knowles Releases Inductors for Mission-Critical RF Applications

Learn How Supercapacitors Enhance Power System in Knowles eBook

Role of High-Q Ceramic Filters to Overcome GNSS Jamming

What Is Multipaction and What Causes It?

In short, multipaction is an electron resonance effect that can occur when free electrons present in a vacuum accelerate and impact a surface. It is common to have free electrons present in an RF device either between conducting surfaces or if the electrons are ejected from the surface dielectric through the strength of the RF field. These free electrons can then be subjected to acceleration by the RF field.

If nothing interferes with the accelerated free electron, such as gas atoms, this electron can travel quite far to impact a surface. This impact can cause a secondary electron emission from that surface, adding to the free electrons present and potentially creating an avalanche-like effect in the device as the newly emitted electrons can be accelerated and impact the surface as well. This can cause the number of accelerated electrons in the field to grow exponentially.

Why is Multipaction a Problem for Space Systems?

In RF space systems, multipaction can cause RF signal loss and distortion and it can increase the noise figure or bit-error-rate. These issues can cause excess RF power to reflect or dissipate, leading to damage to RF components or subsystems that may cause a total communication failure for a satellite for example.

What Can I Do to Mitigate Multipaction During Design?

To reduce the probability of multipaction occurring, proper component and transmission-line design is needed. At Knowles Precision Devices, we have extensive space heritage and are well positioned to help you mitigate multipaction concerns during your design phase. In the past two decades, we have worked with organizations to design components for 13 separate Mars missions where each mission had severe multipaction concerns that we needed to mitigate.

Whenever we work with a customer designing a mission-critical space application, we help mitigate multipaction concerns upfront by discussing the mission risk profile and needs when it comes to resistance to multipaction. Once we have a better understanding of the application and potential risks, there are a variety of mitigation techniques we can employ. On the component design side, we can make changes such as constructing gas-filled laser-welded enclosures or coating surfaces in special materials as needed. We can also conduct extensive testing to catch multipaction at the component level. For example, to ensure the efficacy of the communications payload, we can collaborate closely with customers to conduct a thorough component investigation at high power in vacuum.

Related

Source: Knowles

Recent Posts

Exxelia Offers High-Q RF Microwave Capacitors for High Reliability Applications

21.7.2025
1

Knowles Releases Inductors for Mission-Critical RF Applications

15.7.2025
25

TDK Introduces High Current 80VDC Board-Mount EMI Filters

2.7.2025
33

KYOCERA AVX Releases New 3dB Hybrid Couplers

1.7.2025
18

YAGEO Releases First to Market 750V Aluminum Capacitors

30.6.2025
60

Vishay Expands Automotive High Frequency Thin Film Chip Resistors

26.6.2025
30

Role of High-Q Ceramic Filters to Overcome GNSS Jamming

19.6.2025
24

Advanced Conversion Announces Mass Production of 200C Film Capacitors

18.6.2025
47

Exxelia to Present Smart Integrated Magnetics and MML Film Capacitors at SIAE25 

6.6.2025
46

5th PCNS Conference Registration Now Open!

5.6.2025
48

Upcoming Events

Jul 23
13:00 - 14:00 CEST

PCB design for a Smartwatch

Jul 29
16:00 - 17:00 CEST

Impact of Elevated Voltage and Temperature on Molded Power Inductors in DC/DC converters

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version