Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Murata Releases First High-Frequency XBAR Filter for Next-Gen Networks

    Vishay NTC Immersion Thermistor Delivers Fast Response in Liquid Cooled Automotive Systems

    Wk 27 Electronics Supply Chain Digest

    VINATech Supercapacitors Enhance Automotive Safety with Reliable E-Latch Emergency Power

    Exxelia Unveils Advanced Components for the Medical Device Industry

    TDK Introduces High Current 80VDC Board-Mount EMI Filters

    Bourns Releases High Heat Tolerant TO-227 Thick Film Resistor

    TDK Increases Current Ratings of Automotive Thin-Film Power Inductors

    Sumida Announces New DC Common Mode Choke Coil Series

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Murata Releases First High-Frequency XBAR Filter for Next-Gen Networks

    Vishay NTC Immersion Thermistor Delivers Fast Response in Liquid Cooled Automotive Systems

    Wk 27 Electronics Supply Chain Digest

    VINATech Supercapacitors Enhance Automotive Safety with Reliable E-Latch Emergency Power

    Exxelia Unveils Advanced Components for the Medical Device Industry

    TDK Introduces High Current 80VDC Board-Mount EMI Filters

    Bourns Releases High Heat Tolerant TO-227 Thick Film Resistor

    TDK Increases Current Ratings of Automotive Thin-Film Power Inductors

    Sumida Announces New DC Common Mode Choke Coil Series

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Murata Releases First High-Frequency XBAR Filter for Next-Gen Networks

8.7.2025
Reading Time: 2 mins read
A A

Murata Manufacturing Co., Ltd. has announced the mass production and commercial shipment of the world’s first*1 high-frequency filter using XBAR technology*2.

Developed by combining Murata’s proprietary Surface Acoustic Wave (SAW) filter expertise with XBAR technology from Murata’s subsidiary Resonant Inc., it enables the extraction of desired signals while achieving both low insertion loss and high attenuation.

RelatedPosts

Murata Releases Worlds First 10µF/50V Automotive MLCC in 0805 Size

Murata Announces 0402 Automotive Chip Ferrite Beads for V2X

Murata Releases Worlds First Molded Thermistor with Wire-Bonding

These features are critical for the latest wireless technologies, including 5G, Wi-Fi 6E, Wi-Fi 7, and emerging 6G technologies.

The demand for reliable high-frequency communications continues to grow in response to the widespread deployment of 5G and the future development of 6G. Simultaneously, wireless local-area network (WLAN) standards such as Wi-Fi 6E and Wi-Fi 7 are expanding into higher frequency domains to accommodate ultra-fast data rates.

Filters used in these applications must address key challenges, such as preventing out-of-band interference, maximizing system battery performance, and meeting strict space limitations. Traditional approaches using Low Temperature Co-Fired Ceramic (LTCC) or conventional Bulk Acoustic Wave (BAW) filters often fall short in these performance areas.

Murata’s new XBAR-based filter addresses these limitations by achieving high attenuation performance while maintaining a wide bandwidth and low signal loss. The XBAR structure itself excites bulk acoustic waves using comb-shaped electrodes and a piezoelectric single-crystal thin film, enabling performance beyond the reach of conventional filter structures. It effectively removes high-frequency interference, even in bands above 3 GHz, allowing for clearer signal detection and better performance, contributing to high-speed, high-capacity, and high-quality wireless communication.

Key performance parameters include a passband of 5150–7125 MHz, a typical insertion loss of 2.2 dB, and a typical return loss of 17 dB. Typical attenuation figures are 11 dB at 4800–5000 MHz, 28 dB at 3300–4800 MHz, 27 dB at 7737–8237 MHz, and 26 dB at 10300–14250 MHz.

The new filter is targeted at devices with embedded wireless functionality, including smartphones, wearables, notebook PCs, and communication gateways, offering an optimal balance of performance and cost efficiency. Murata will continue to drive innovation in filter technologies to support the evolution of wireless communications, and expects this architecture to scale further, with future product generations capable of operating effectively in ultra-high frequency bands above 10GHz.

  • *1According to Murata research as of July 7, 2025.
  • *2XBAR technology: Murata’s proprietary filter structure that excites bulk acoustic waves using comb-shaped electrodes and piezoelectric single-crystal thin films.

Related

Source: Murata

Recent Posts

Würth Elektronik Present Efficient Motor Controller Evaluation Kit

8.7.2025
1

VINATech Supercapacitors Enhance Automotive Safety with Reliable E-Latch Emergency Power

7.7.2025
14

TDK Introduces High Current 80VDC Board-Mount EMI Filters

2.7.2025
24

KYOCERA AVX Releases New 3dB Hybrid Couplers

1.7.2025
14

YAGEO Releases First to Market 750V Aluminum Capacitors

30.6.2025
49

Murata Releases Worlds First 10µF/50V Automotive MLCC in 0805 Size

26.6.2025
56

Würth Elektronik Extends High Saturation Flat-Wire Power Inductors Line

26.6.2025
23

KYOCERA AVX Releases Robust Vertical-Mating Battery Connectors

25.6.2025
10

Murata Announces 0402 Automotive Chip Ferrite Beads for V2X

19.6.2025
29

Role of High-Q Ceramic Filters to Overcome GNSS Jamming

19.6.2025
21

Upcoming Events

Jul 23
13:00 - 14:00 CEST

PCB design for a Smartwatch

Jul 29
16:00 - 17:00 CEST

Impact of Elevated Voltage and Temperature on Molded Power Inductors in DC/DC converters

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version