Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Transformer Behavior – Current Transfer and Hidden Feedback

    Littelfuse Completes Acquisition of Basler Electric

    Isabellenhütte Releases Automotive Pulse Load Resistors

    Molex Introduces Modular Wire-to-Wire Automotive Connectors

    Vishay Releases Automotive Glass Protected 0402 NTC Thermistor

    Current Sense Transformer and its Calculation

    Samsungs Low ESL MLCCs to Power Next-Generation ADAS SoCs

    TDK Unveils Small Automotive Power Inductors

    YAGEO Launches Hybrid Polymer Radial Capacitor for High-Reliability Automotive and Power Applications

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Transformer Behavior – Current Transfer and Hidden Feedback

    Littelfuse Completes Acquisition of Basler Electric

    Isabellenhütte Releases Automotive Pulse Load Resistors

    Molex Introduces Modular Wire-to-Wire Automotive Connectors

    Vishay Releases Automotive Glass Protected 0402 NTC Thermistor

    Current Sense Transformer and its Calculation

    Samsungs Low ESL MLCCs to Power Next-Generation ADAS SoCs

    TDK Unveils Small Automotive Power Inductors

    YAGEO Launches Hybrid Polymer Radial Capacitor for High-Reliability Automotive and Power Applications

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Murata Releases In-vehicle Compact Crystal in 2016 Size

23.7.2025
Reading Time: 3 mins read
A A

Murata Manufacturing Co., Ltd. commercialized the ‘XRCGB_F_C’ series compact crystal unit in 2016 size for in-vehicle infotainment*1 and other automotive applications. Mass production has already begun.

Most in-vehicle infotainment systems use 3225 size crystal units. In recent years, the growing demand for enhanced functionality in electronic systems—particularly with the integration of ADAS*2 — has led to an increased reliance on electronic components.

RelatedPosts

Murata Releases World’s First Inner Cavity-Structure Ultra-Low-Loss LCP Flexible Substrate

Murata Releases World First 15nF 1.25kV C0G MLCC in 1210 Size

Murata Expands High Rel NTC Thermistors in Compact 0603M Size

This trend necessitates the development of even smaller electronic parts. Simultaneously, communications standards for in-vehicle systems are also advancing, which results in an intense wireless traffic of these individual devices.

Under these circumstances, signal transmission timing must be accurately synchronized between in-vehicle device ICs in order to correctly receive electric signals on frequencies defined by different communications standards and avoid inter-IC communication errors. This therefore requires high-precision timing devices that generate stable clock signals.*3

To respond to this need, Murata developed this 2016-size product for in-vehicle applications, achieving both smaller size and higher precision thanks to our original packaging technique and design and process optimization. Compared to the 3225 size, the new product achieves about 60% reduction in implementation space, contributing to downsizing the device itself while offering enhanced functionality. This product also features powerful cracking resistance while soldering and is preferred by many customers for in-vehicle applications.

We will continue to help bring safety and reliability to customers by expanding the use of highly reliable and high-performance crystal units.

  • *1In-Vehicle Infotainment (IVI): An automotive function that provides information and entertainment to the driver and passengers through an IT device mounted on the automobile.
  • *2ADAS: Advanced Driver Assistance System.
  • *3Clock signals: Signals transmitted at a stable cycle with certain intervals.

Features

  1. Compact 2016 size
  2. High precision
  3. Operating temperature 105°C guaranteed
  4. High resistance to cracks while soldering
  5. Highly reliable with a low failure rate (particle-less)
  6. Stable supply
  7. Lead-free

Product pages

  • Overview of XRCGB_F_C Series
  • Detailed Model Comparison of XRCGB_F_C Series

Related

Source: Murata

Recent Posts

Isabellenhütte Releases Automotive Pulse Load Resistors

11.12.2025
20

Vishay Releases Automotive Glass Protected 0402 NTC Thermistor

11.12.2025
12

Samsungs Low ESL MLCCs to Power Next-Generation ADAS SoCs

10.12.2025
24

TDK Unveils Small Automotive Power Inductors

10.12.2025
21

YAGEO Launches Hybrid Polymer Radial Capacitor for High-Reliability Automotive and Power Applications

10.12.2025
27

Murata Releases World’s First Inner Cavity-Structure Ultra-Low-Loss LCP Flexible Substrate

10.12.2025
32

November 2025 Interconnect, Passives and Electromechanical Components Market Insights

4.12.2025
78

Stackpole Expands Anti-Corrosive Anti-Sulfur Thin Film Chip Resistors

3.12.2025
12

TAIYO YUDEN Extends Polymer Hybrid Aluminum Capacitors with Higher Ripple Current and Lower Profile

3.12.2025
30

Upcoming Events

Dec 15
December 15 @ 13:00 - December 18 @ 15:15 EST

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Dec 16
17:00 - 18:00 CET

Coaxial Connectors and How to Connect with the PCB

Dec 19
12:00 - 14:00 EST

External Visual Inspection per MIL-STD-883 TM 2009

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version