• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication
Schematic illustration of the structure and cross-sectional transmission electron micrograph displaying a part of the structure of the element

Nanometers-thin Niobium Oxide (NbO2) Memristor Can Bring Breakthrough to Neuromorphic AI Hardware Designs

11.4.2022

Flex Suppressor Explained and its Applications

24.3.2023

Exploring the Benefits of High-Performance MLCC Capacitors for Aerospace and Defense

23.3.2023

Murata Establishes Joint Venture Company to Produce MLCC Raw Materials

23.3.2023

Examining the Influence of ESR and Ripple Current on Selecting the Suitable Capacitor

21.3.2023

SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

20.3.2023

Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

20.3.2023
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Flex Suppressor Explained and its Applications

    Exploring the Benefits of High-Performance MLCC Capacitors for Aerospace and Defense

    Murata Establishes Joint Venture Company to Produce MLCC Raw Materials

    Examining the Influence of ESR and Ripple Current on Selecting the Suitable Capacitor

    SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

    Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

    Flying Capacitors Explained

    TDK Introduces Compact High-Current Chokes for Automotive and Industrial Applications

    ECIA NA February 2023 Electronic Components Sales Confirms Growth Trend

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    Understanding Basics of Current Sense Resistors

    What Decoupling Capacitor Value To Use And Where To Place Them

    How to Measure Rated Current on Power Inductors

    LTspice Simulation of a Spark-Gap Circuit Protection Surge Arrester

    Approximate Inductor Design Using Two Alternative Cores

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Multiphase Buck Trans-Inductor Voltage Regulator (TLVR) Explained

    Smart Power Distribution Unit Architecture and Inductor Losses

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Flex Suppressor Explained and its Applications

    Exploring the Benefits of High-Performance MLCC Capacitors for Aerospace and Defense

    Murata Establishes Joint Venture Company to Produce MLCC Raw Materials

    Examining the Influence of ESR and Ripple Current on Selecting the Suitable Capacitor

    SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

    Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

    Flying Capacitors Explained

    TDK Introduces Compact High-Current Chokes for Automotive and Industrial Applications

    ECIA NA February 2023 Electronic Components Sales Confirms Growth Trend

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    Understanding Basics of Current Sense Resistors

    What Decoupling Capacitor Value To Use And Where To Place Them

    How to Measure Rated Current on Power Inductors

    LTspice Simulation of a Spark-Gap Circuit Protection Surge Arrester

    Approximate Inductor Design Using Two Alternative Cores

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Multiphase Buck Trans-Inductor Voltage Regulator (TLVR) Explained

    Smart Power Distribution Unit Architecture and Inductor Losses

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Nanometers-thin Niobium Oxide (NbO2) Memristor Can Bring Breakthrough to Neuromorphic AI Hardware Designs

11.4.2022
Reading Time: 2 mins read
0 0
Schematic illustration of the structure and cross-sectional transmission electron micrograph displaying a part of the structure of the element

Schematic illustration of the structure and cross-sectional transmission electron micrograph displaying a part of the structure of the element

0
SHARES
389
VIEWS

In a paper recently published in Nature, researchers Suhas Kumar of Hewlett Packard Laboratories, R. Stanley Williams with Texas A&M University, and the late Stanford PhD student Ziwen Wang introduce an isolated nanoscale electronic circuit element that can perform nonmonotonic operations and transistorless all-analogue computations using nanometers-thin Niobium Oxide (NbO2) memristor. With input voltages, it can output not just simple spikes but a whole array of neural activity such as bursts of spikes, self-sustained oscillations, and other brain activities.

“This work paves a way towards very compact and densely functional neuromorphic computing primitives, and energy-efficient validation of neuroscientific models,” the researchers say. The IEEE (Institute of Electrical and Electronics Engineers) hails the paper as a breakthrough.

Current hardware approaches to neuromorphic AI rely on elaborate transistor circuits to simulate biological functions. Generating neuromorphic action potentials in a circuit element theoretically requires a minimum of third-order complexity, but there have been no previous demonstrations of any isolated third-order element.

The researchers fabricated sub-100-nm components, each of which incorporates a NbO2 volatile Mott memristive switch, an internal parallel capacitor, and an internal series resistor.

RelatedPosts

Researchers Demonstrated Quantum Memristor as a Link between AI and Quantum Computing

Graphene-based Memristors Show Promise for Brain-Based Computing

Purity of Materials May be the Key in Further Memristor Development

The most crucial part of the element is the nanometers-thin niobium oxide (NbO2) volatile Mott memristor. A memristor is a non-linear two-terminal electrical component proposed in 1971 by electrical engineer and computer scientist Leon Chua, who later extended the notion of memristive systems to capacitors and inductors.

Memristors can potentially be made into non-volatile solid-state memory, which could allow greater data density than hard drives with access times similar to Dynamic Random Access Memory. A potential application of memristors is in analog memories for superconducting quantum computers.

The proposed Mott memristors also have the ability to reflect temperature-driven changes in resistance. Mott transition materials therefore vary between insulating and conducting according to their temperature, which can result in current spikes that resemble a neuron’s action potential.

The researchers say it is important to fine-tune the element’s material and physical parameters to identify a combination that works. “You cannot find this by accident,” Williams told IEEE Spectrum. “Everything has to be perfect before you see this characteristic, but once you’re able to make this thing, it’s actually very robust and reproducible.”

The researchers demonstrate that it is possible to incorporate the Mott transition in NbO2 as an additional dynamical process to construct an isolated nanoscale electronic circuit element with third-order complexity, which can then be designed to produce optimal interactions among its constituent electrical and thermal components.

They further show that transistorless all-analogue network of neuromorphic elements can solve computationally difficult problems that have far-reaching applications in alleviating the von Neumann bottleneck of present digital computers. The researchers say this result enables extremely compact and highly functional neuromorphic computing primitives.

Source: Nature

Related Posts

Non-linear Passives

Variohm Announced Rapid Response NTC thermistor

3.3.2023
22
Biodegradable polymers in supercapacitors and the recycling process (Source: DICP; Image by WU Lu)
Capacitors

Biodegradable Polymers Are Promising for Supercapacitors

2.3.2023
32
Polysulfates with excellent thermal properties are casted into flexible free-standing films. High-temperature, high-voltage capacitors based on such films show state-of-the-art energy storage properties at 150 degrees Celsius. Such power capacitors are promising for improving the energy efficiency and reliability of integrated power systems in demanding applications such as electrified transportation. (Credit: Yi Liu and He (Henry) Li/Berkeley Lab)
Capacitors

Polysulfate Film Capacitors Pose to Extend Temperature and Energy Density of Film Capacitors

22.2.2023
95

Upcoming Events

Mar 29
15:00 - 16:00 EEST

Supercapacitors vs. Batteries in Engine Starting

Mar 29
17:00 - 18:00 CEST

Practical LLC Transformer Design Methodology

Apr 3
April 3 @ 12:00 - April 4 @ 14:00 CEST

Microelectronic Packaging Failure Modes and Analysis

View Calendar

Popular Posts

  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • Leakage Current Characteristics of Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

PCNS Call for Papers !

Archive

2022
2021
2020
2019
2018
2017

Symposium

Passive Components Networking Symposium

Passives e-Learning

Knowledge Blog

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.