• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

Photoemission spectroscopy XPS how it works and assist in EEE parts analysis

6.6.2019

Snubber Capacitors in Power Electronics

27.9.2023

TAIYO YUDEN Expands Lineup of Multilayer Metal Power Inductors

26.9.2023

Bourns Releases New High Energy Gas Discharge Tubes

26.9.2023

Würth Elektronik Extends its Application and Industry Guide for Easy Navigation to Suitable Circuits and Components

26.9.2023

Designing a Small Integrated 500W LLC Transformer

26.9.2023

KYOCERA AVX Earned a Platinum 2022 TTI Asia Supplier Excellence Award

26.9.2023
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Snubber Capacitors in Power Electronics

    TAIYO YUDEN Expands Lineup of Multilayer Metal Power Inductors

    Bourns Releases New High Energy Gas Discharge Tubes

    Würth Elektronik Extends its Application and Industry Guide for Easy Navigation to Suitable Circuits and Components

    Designing a Small Integrated 500W LLC Transformer

    KYOCERA AVX Earned a Platinum 2022 TTI Asia Supplier Excellence Award

    Murata Completes New MLCC Factory in Thailand to Satisfy Smartphone and EV Market Needs

    Charging/Discharging of Linear andNon-linear Capacitors

    How to Select Inductor For Switching Power Supply

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Charging/Discharging of Linear andNon-linear Capacitors

    How to Select Inductor For Switching Power Supply

    Oscillators Integration, Selection Guide and Design In

    Input Capacitor Selection for Power Supplies – Part 3: Electrolytic Capacitors

    Input Capacitor Selection for Power Supplies Part 2 – Ceramic Capacitors

    Input Capacitor Selection for Power Supplies Video (Part 1)

    Vishay Webinar: Components Selection for Solar Panel Systems

    Capacitors Basics: Decoupling

    Totem Pole PFC Design for E-Mobility; Microchip and WE Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Snubber Capacitors in Power Electronics

    TAIYO YUDEN Expands Lineup of Multilayer Metal Power Inductors

    Bourns Releases New High Energy Gas Discharge Tubes

    Würth Elektronik Extends its Application and Industry Guide for Easy Navigation to Suitable Circuits and Components

    Designing a Small Integrated 500W LLC Transformer

    KYOCERA AVX Earned a Platinum 2022 TTI Asia Supplier Excellence Award

    Murata Completes New MLCC Factory in Thailand to Satisfy Smartphone and EV Market Needs

    Charging/Discharging of Linear andNon-linear Capacitors

    How to Select Inductor For Switching Power Supply

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Charging/Discharging of Linear andNon-linear Capacitors

    How to Select Inductor For Switching Power Supply

    Oscillators Integration, Selection Guide and Design In

    Input Capacitor Selection for Power Supplies – Part 3: Electrolytic Capacitors

    Input Capacitor Selection for Power Supplies Part 2 – Ceramic Capacitors

    Input Capacitor Selection for Power Supplies Video (Part 1)

    Vishay Webinar: Components Selection for Solar Panel Systems

    Capacitors Basics: Decoupling

    Totem Pole PFC Design for E-Mobility; Microchip and WE Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Photoemission spectroscopy XPS how it works and assist in EEE parts analysis

6.6.2019
Reading Time: 5 mins read
A A
13
VIEWS

Source: Alter Technology article

by Francisco Javier Aparicio Rebollo, Senior materials and Test Engineer at Alter Technology.

RelatedPosts

Snubber Capacitors in Power Electronics

TAIYO YUDEN Expands Lineup of Multilayer Metal Power Inductors

Bourns Releases New High Energy Gas Discharge Tubes

X-ray photoemission spectroscopy (XPS) also known as electron spectroscopy for chemical analysis (ESCA) is a surface-sensitive quantitative analysis method to accurately determine the elemental composition of solid materials.

The technique is the most extended tool for the chemical characterization of thin films coatings and surfaces either for industrial applications as well as for research. Amongst others, this is so due to:

  • The non-destructive
  • The broad analysis window that cover all the elements unless H and He.
  • The high sensitivity.
    • For heavy metals detection limit < 0.005 % atomic concertation (ppm in weight).
    • For light organic and inorganic elements detection limit < 1 %.
  • Free of matrix effects which compromise the reliability of other techniques such as EDS, XRF, and FTIR.

Practical Applications

The figure shows a representative example of the XPS survey spectrum of a sample containing both heavy and light elements of interest for technological applications. This illustrates the suitability of the technique for the simultaneous detection of either heavy and light nucleus within the limit Z > 2. Hence, XPS is one of the most reliable approaches for the non-destructive quantification of the atomic concentration in solid coatings.

featured image: example of XPS survey spectrum

Considering the low escape depth of the photoelectrons the inspection thickness of typical XPS instruments is of ≈ 1-3 nm. This makes this technique the most suitable for the thin-film and surface applications and processes. Nonetheless, is not so surface sensitive that the inevitable contamination developed during industrial processes completely hidden the actual sample composition, in contrast to other techniques that require ultra-high cleanliness levels only achievable by preconditioning by sputtering.

Considering the low escape depth of the photoelectrons the inspection thickness of typical XPS instruments is of ≈ 1-3 nm. This makes this technique the most suitable for the thin-film and surface applications and processes. Nonetheless, is not so surface sensitive that the inevitable contamination developed during industrial processes completely hidden the actual sample composition, in contrast to other techniques that require ultra-high cleanliness levels only achievable by preconditioning by sputtering.

XPS analysis is demanded many industrial applications where the surface composition is a critical factor:XPS analysis

  • Photovoltaics.
  • Electronics devices and EEE parts.
  • Packaging systems.
  • Display technology.
  • Magnetic media.
  • Corrosion (oxidation).

How it works

XPS working principle is based upon the photoelectric effect described in the figure.

XPS Working principle

When a photon impinges into the sample surface its energy can be absorbed completely by the electronic cloud of the atoms present in the sample. If the energy is high enough, this can cause the sample ionization and the ejection of the so-called photoelectrons with a kinetic energy that according to the Einstein equation [1] is determined by the electron binding energy of the ejected electron and photon energy.

Ekinetic = hν – Ebinding                                                                                        [1]

The binding energy of valence band electrons does not only depend on the elemental composition but also on the material characteristics such as the crystalline phase and others, whereas in the case of internal core electrons the binding energy is characteristics of the atoms source and the electronic level. Thus, according to this principle, XPS makes use of high energy X-ray photons to induce the photoemission of the core electrons who escape with a kinetic energy that is specific to the emitting chemical element.

Additional advantages

In addition to surface analyses, it is also used for the fine characterization of heterogeneous samples where the composition changes along with the depth. Thus, in combination with sputtering guns, the technique is used to perform depth profiles elemental analyses.

Moreover, the core energy is slightly distorted by the chemical environment what is used in an advantageous way to determine the oxidation estate of the element by fitting procedures. This is illustrated in the next figure, which shows the technique resolve the presence of metallic nickel and (Ni0) and nickel oxide (NiO) and distinguishes between arsenic oxide and gallium arsenide.

Alter Technology compromises 

During the last decade, Alter technology has established a solid collaborating network with reputed research institutions and technological centers. This grant Alter access to different XPS instruments and specifically conceived for different applications: conventional XPS, depth profiles analyses. angle-resolved XPS, UPS, and others.

Related Posts

Capacitors

Snubber Capacitors in Power Electronics

27.9.2023
25
Inductors

Designing a Small Integrated 500W LLC Transformer

26.9.2023
8
Capacitors

Charging/Discharging of Linear andNon-linear Capacitors

25.9.2023
30

Upcoming Events

Sep 26
September 26 @ 12:00 - September 28 @ 14:00 EDT

Microwave Packaging Technology

Sep 28
11:00 - 12:00 CDT

Inductor Basics – Selecting Parts by Core Material and Shape

Oct 3
October 3 @ 12:00 - October 5 @ 14:00 EDT

Design and Test of Non-Hermetic Microelectronic

View Calendar

Popular Posts

  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • Leakage Current Characteristics of Capacitors

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0
  • YAGEO’s Role in Powering the AI Revolution

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Archive

2023
2022
2021
2020
2019
2018
2017

Symposium

Passive Components Networking Symposium

Passives e-Learning

Knowledge Blog

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.