Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Releases High Performance 105C DC Link Film Capacitors

    YAGEO Offers Automotive MOVs for EV and AI power

    YAGEO Acquires 100% of Shares of Shibaura Electronics

    Wk 3 Electronics Supply Chain Digest

    Vishay Extends Aluminum Capacitors Rating Up to 600 V for DC Links

    Würth Elektronik Introduces Product Navigator for Passive Components

    Panasonic Passive Components for Reliable Robotic Arms

    Littelfuse Unveils Ultra-Low-Power TMR Magnetic Switches

    DC/DC Push‑Pull Converter vs PSFB Design Guide

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Releases High Performance 105C DC Link Film Capacitors

    YAGEO Offers Automotive MOVs for EV and AI power

    YAGEO Acquires 100% of Shares of Shibaura Electronics

    Wk 3 Electronics Supply Chain Digest

    Vishay Extends Aluminum Capacitors Rating Up to 600 V for DC Links

    Würth Elektronik Introduces Product Navigator for Passive Components

    Panasonic Passive Components for Reliable Robotic Arms

    Littelfuse Unveils Ultra-Low-Power TMR Magnetic Switches

    DC/DC Push‑Pull Converter vs PSFB Design Guide

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Precision Voltage Divider Resistors in Space Applications

29.9.2021
Reading Time: 5 mins read
A A

When selecting a component in the signal path of a satellite system, it is often difficult to find a device with the radiation tolerance and the accuracy required.

Signal integrity is after all the key specification when designing an analog signal chain. The main causes of error to the integrity of the signal chain can be divided into two categories: inaccuracies due to noise and inaccuracies due to shifts in voltage. While it is important to consider all components in the signal path, one component is the most critical in achieving precision performance: the voltage reference.

RelatedPosts

VPG Demonstrates Precision Resistor in Cryogenic Conditions

Comparison Testing of Chip Resistor Technologies Under High Vibration

Alpha Electronics Opens New Foil Resistor Plant in Japan

Noise

Noise in a system can be reduced with the correct use of filters and the averaging of measurements when converting a signal from the analog domain to the digital domain. However, large or complex filters require board space and increased component count, not to mention added weight, resulting in higher costs. Large filters also increase the settling time for transient response. Averaging saves on extra component cost at the expense of sample frequency. The digital-to-analog converter requires a voltage reference with lower noise than the signal being measured to take advantage of averaging. For example, a 20-bit system requires the voltage reference to have a noise of less than 1 part per million (ppm). If the system requires higher precision than a voltage reference can deliver, averaging can still be used, but will be extremely costly as multiple analog-to-digital converters are needed. Each converter has its own voltage reference and the measurement from each is then averaged.

When a voltage reference is exposed to radiation, the noise increases. Although the increase in noise is not large, the above solution keeps the increase even lower. Also, popcorn noise sources would only exist sparsely with perhaps one site on a die, and they would not receive the gain of 11. If ever popcorn noise is found, it will be an order of magnitude smaller than in a traditional bandgap reference.

Voltage Shifts

Voltage shifts in a system may be reduced with fairly simple additional circuitry, although making adjustments across a full temperature range presents added difficulty. The cost of the additional circuitry is also high. Furthermore, offset voltages can only be corrected if they are detected, meaning that there must be a fixed voltage accurate enough to use as a base for the rest of the system. Once again the critical component of the system is the voltage reference. It sets the common mode for amplifiers, can be used to trigger comparators, and may be used to provide a stable supply to sensitive sensors. Most importantly, it sets the accuracy for the analog to digital and digital to analog converters.

Key aspects to consider on a voltage reference include initial accuracy, drift over temperature, drift over time and shift over radiation. Many voltage references provide trim options to adjust initial accuracy; however, the process requires external circuitry and may adversely affect the other specifications. A much simpler approach is to calibrate out the error on the digital side. Note that digital calibration reduces the total input signal voltage range by the amount of the error. Bandgap references can be found with an initial accuracy within hundredths of a percent before radiation.

Drift over temperature in precision voltage references is caused by imperfections in the elements making up the device and is not linear. The uncompensated curve of a bandgap reference is about 20ppm. One solution to improve the temperature coefficient of the device is to use trans linear circuitry to compensate for the curve by adding an exponential term to the current summation. With curve compensation, one is able to achieve a temperature coefficient lower than 3ppm.

Drift over time is independent of other shifts and occurs predominantly toward the beginning of the life of the reference. Thus, initial calibration does not help correct for this drift. Calibration after an initial burn in period is an option at the expense of the burn in time. Also, the cascade design for creating a bandgap reference does not just help reduce noise, it has been found to reduce the long-term drift as well.

Finally, shifts due to radiation are critical in space applications. Many voltage references provide excellent accuracy in industrial environments but have large shifts when exposed to radiation.

Precision resistors are one of the key components in voltage references.

Below is an example of customer requirements for a very stable precision resistor for such application:

Figure 1: Customer example for ultra high-precision pair of voltage dividers using Bulk Metal® Foil resistorsexample of customer requirements for a very stable precision resistor for such application
Figure 1: example for ultra high-precision pair of voltage dividers using Bulk Metal® Foil technology resistors

Electrical Specifications:

  • R1 = 20KΩ, R2 = 10KΩ, R3 = 20KΩ, R4 = 10KΩ
  • Absolute Tolerance: 0.01% each
  • Ratio Matching Tolerance: 0.01% R1 to R2; 0.01% R3 to R4
  • Absolute TCR: ±2.0 ppm/°C (-55°C to +125°C, +25°C Ref)
  •  TCR Track: R1 to R2 & R3 to R4: 0.8 PPM/°C
  • Rated Power: 0.2 W at 70 °C, for the entire resistive element R1 and R2, divided proportionally between the two values.

Four fundamental factors determine how “ideal” a precision voltage divider will be:

  1. Initial absolute resistance value, or how closely the absolute resistance value can be achieved
  2. How precisely the value of individual resistors can be controlled
  3. How precisely the end-of-life tolerance is maintained under a wide range of operating conditions and stress factors (temperature, humidity, load, ESD, etc.)
  4. Fast response without ringing and fast thermal stabilization, and the ability of the resistor to react to rapid switching without adversely affecting the circuit function

Networks from VPG Foil Resistors are the only devices to have perfected these four factors to eliminate the inter-parameter compromises inherent in all other types of technologies. All important characteristics-tolerance, long-term stability, temperature coefficient, power coefficient, ESD, noise, capacitance, and inductance-are optimized, approaching the theoretical ideal in total performance.

Related

Source: VPG Foil Resistors LinkeIn Blog

Recent Posts

Würth Elektronik Introduces Product Navigator for Passive Components

14.1.2026
47

Panasonic Passive Components for Reliable Robotic Arms

14.1.2026
54

How Metal Prices Are Driving Passive Component Price Hikes

8.1.2026
309

Modelithics COMPLETE Library v25.8 for Keysight ADS

7.1.2026
39

2025 Top Passive Components Blog Articles

5.1.2026
115

Exxelia Releases Custom Smart Integrated Magnetics for Space Applications

5.1.2026
59

Bourns BTJ Thermal Jumper Chips for PCB Heat Management

22.12.2025
96

Isabellenhütte Releases Automotive Pulse Load Resistors

11.12.2025
53

Bourns Releases Four High-Precision, High-Power Foil Resistors

5.12.2025
28

Upcoming Events

Jan 21
18:00 - 18:45 CET

To Rogowski or not to Rogowski

Jan 27
16:00 - 17:00 CET

Simplifying Vehicle Development with Automotive Ethernet and Zonal Smart Switch Technologies

Feb 24
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • How Metal Prices Are Driving Passive Component Price Hikes

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Degradation of Capacitors and its Failure Mechanisms

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version