Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Lifetime Assessment for Capacitors in EPS Application

    Passive Components J-STD-075 Process Sensitivity Level Classification And Labeling

    New EPN Dielectric Film Capacitors Featuring High Temp and Power Density

    E-Textile SMD-Ribbon Joints Protections Against Sweat

    Reliability of Tantalum Capacitors: the Role of Internal Stress

    Bourns Releases Semi-Shielded Power Inductor with Polarity Control

    Quality Challenges and Risk Mitigation for Passive Components in Harsh Environments

    Silicon Capacitors Reliable Performance in Harsh Conditions

    Tantalum Capacitor Technology Advantages for Harsh Environment

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Lifetime Assessment for Capacitors in EPS Application

    Passive Components J-STD-075 Process Sensitivity Level Classification And Labeling

    New EPN Dielectric Film Capacitors Featuring High Temp and Power Density

    E-Textile SMD-Ribbon Joints Protections Against Sweat

    Reliability of Tantalum Capacitors: the Role of Internal Stress

    Bourns Releases Semi-Shielded Power Inductor with Polarity Control

    Quality Challenges and Risk Mitigation for Passive Components in Harsh Environments

    Silicon Capacitors Reliable Performance in Harsh Conditions

    Tantalum Capacitor Technology Advantages for Harsh Environment

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Researchers Demonstrated 200C Polymer Film Dielectric

28.7.2025
Reading Time: 4 mins read
A A

Researchers from China published article titled “Enhancement of high-temperature capacitive energy storage performance in all-polymer dielectric composites via microphase separation” in Applied Physics Letters.

Abstract

RelatedPosts

Lifetime Assessment for Capacitors in EPS Application

Passive Components J-STD-075 Process Sensitivity Level Classification And Labeling

New EPN Dielectric Film Capacitors Featuring High Temp and Power Density

Polymer dielectric capacitors play a crucial role in modern electronics and power systems owing to their exceptional power density, high breakdown strength, excellent processability, and cost-effectiveness. Nevertheless, their practical deployment in harsh operating environments, particularly in electric vehicles and aerospace power electronics, remains challenging due to the inherent thermal instability of conventional polymer dielectrics. Herein, we report an all-polymer dielectric composite (APDC) material fabricated from partially miscible polyetherimide (PEI)/polyamide-imide (PAI) blends that exhibits significantly improved high-temperature capacitive energy storage properties, including breakdown strength (Eb), discharge energy density (Ud), and charge–discharge efficiency (η). The performance enhancement stems from the self-assembled nanoscale interfacial architectures comprising uniformly dispersed PAI domains within the PEI matrix, coupled with the intrinsic energy band structure mismatch between PEI and PAI (notably in electron affinity). These structural characteristics effectively create deep charge traps, resulting in a substantial reduction of leakage current density by more than one order of magnitude compared to pristine PEI under elevated temperatures and high-electric fields. Notably, the developed APDC materials feature a straightforward, efficient, and cost-effective fabrication process, rendering them highly promising for scalable production of high-performance dielectric films for high-temperature capacitors.

Introduction

Polymer dielectric film capacitors are essential in electronics due to their impressive energy storage properties and ease of manufacturing. However, their performance drops significantly in high-temperature environments, which limits their use in advanced applications like electric vehicles and aerospace power systems.

This article explores a novel approach to overcoming this limitation by designing all-polymer dielectric composites using microphase separation of polyetherimide (PEI) and polyamide-imide (PAI).

Key Points

  • All-polymer dielectric composites (APDCs) were fabricated using blends of PEI and PAI.
  • Microphase separation leads to nanoscale interfacial structures and deep charge traps.
  • These structures reduce leakage current and enhance high-temperature performance.
  • Significant improvements observed in breakdown strength, energy density, and efficiency.
  • Fabrication method is simple, scalable, and cost-effective.

Extended Summary

The researchers developed APDC materials by blending PEI and PAI polymers in various ratios to form thin dielectric films. Through a controlled solvent casting and thermal curing process, the blend achieved microphase separation, forming uniformly dispersed PAI domains within the PEI matrix. This nanoscale architecture created energetically favorable conditions—particularly due to mismatched electron affinities between the polymers—which induced deep charge traps at the interface.

These deep traps effectively suppressed leakage currents under high temperatures and strong electric fields, improving the overall capacitive performance. Specifically, the new composites demonstrated over a tenfold reduction in leakage current density compared to pure PEI, alongside notable enhancements in breakdown strength (Eb), discharge energy density (Ud), and efficiency (η).

To validate these improvements, the team conducted extensive characterizations using tools like FIB-SEM, TEM, FTIR, DSC, and broadband dielectric spectroscopy. The results confirmed that microphase-separated structures consistently deliver superior dielectric behavior across a wide temperature range—up to 200 °C—making them promising candidates for real-world high-temperature capacitor applications.

Notably, the fabrication process is straightforward and scalable, relying on common solvents and curing procedures, which paves the way for commercial application without added complexity or cost.

Conclusion

This study presents a compelling advance in dielectric material science by leveraging microphase separation in all-polymer composites. By strategically combining PEI and PAI, the researchers created a material that withstands high temperatures while maintaining excellent energy storage performance. Their work points to practical, scalable solutions for next-generation capacitors in demanding environments.

Read the full article:

Jinbao Chen, Ting Li, Ziyu Lv, Yongbiao Zhai, Wugang Liao, Qiyan Zhang; Enhancement of high-temperature capacitive energy storage performance in all-polymer dielectric composites via microphase separation. Appl. Phys. Lett. 7 July 2025; 127 (1): 012903. https://doi.org/10.1063/5.0280505

related link: What is a dielectric constant of polymer organic materials

Related

Source: Applied Physics Letters

Recent Posts

Lifetime Assessment for Capacitors in EPS Application

25.9.2025
13

Passive Components J-STD-075 Process Sensitivity Level Classification And Labeling

25.9.2025
9

New EPN Dielectric Film Capacitors Featuring High Temp and Power Density

25.9.2025
9

Reliability of Tantalum Capacitors: the Role of Internal Stress

25.9.2025
19

Bourns Releases Semi-Shielded Power Inductor with Polarity Control

25.9.2025
2

Quality Challenges and Risk Mitigation for Passive Components in Harsh Environments

24.9.2025
17

Silicon Capacitors Reliable Performance in Harsh Conditions

24.9.2025
23

Tantalum Capacitor Technology Advantages for Harsh Environment

24.9.2025
28

Thermoset Polymer Dielectric Capacitors for Harsh Environment Applications 

24.9.2025
12

EMI Noise Mitigation in Automotive 48V Power Supply Systems

24.9.2025
17

Upcoming Events

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 8
11:00 - 12:00 CEST

PCB Online Shop – simply “Made in Germany” by Würth Elektronik

Oct 14
16:00 - 17:00 CEST

Smart Sensors, Smarter AI: Building Reliable Edge Systems

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version