Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Würth Elektronik Releases Push-Button and Main Switches

    Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

    Stackpole Extends Voltage of High Temp Chip Resistors

    High Voltage MLCCs Meeting the Growing Demand for Efficiency in Power Conversion

    Bourns Releases High Power High Ripple Chokes

    KYOCERA AVX Releases Hermaphroditic WTW and WTB Connectors

    Radiation Tolerance of Tantalum and Ceramic Capacitors

    TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Würth Elektronik Releases Push-Button and Main Switches

    Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

    Stackpole Extends Voltage of High Temp Chip Resistors

    High Voltage MLCCs Meeting the Growing Demand for Efficiency in Power Conversion

    Bourns Releases High Power High Ripple Chokes

    KYOCERA AVX Releases Hermaphroditic WTW and WTB Connectors

    Radiation Tolerance of Tantalum and Ceramic Capacitors

    TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Samsung Releases Worlds First 0603 X6S 22uF 10V MLCC for In-Vehicle Infotainment

10.4.2025
Reading Time: 3 mins read
A A

Samsung Electro-Mechanics has launched the world’s first MLCC ceramic capacitors for In-Vehicle Infotainment with 0603 inch X6S 22uF 10V specifications.

Samsung Electro-Mechanics developed and commenced mass production of the CL10X226MP91IN# multilayer ceramic capacitor with a capacitance of 22uF at 10V in a 0603 inch (1.6×0.8mm) size, X6S (-55 to 105℃) for In-Vehicle Infotainment. Samples are also available.

RelatedPosts

Samsung Releases 1000V 1812 X7R 100nF MLCC for Electric Vehicles

Samsung Electro-Mechanics Releases Molded MLCC Capacitors

Samsung Electro-Mechanics Focuses MLCCs on AI servers and Automotive

As vehicles become more advanced, the demand for miniaturization of MLCCs and expanded capacitance continues to grow.

This product extends the voltage capability of existing X6S lineup products from 6.3V to 10V while maintaining the same size and capacitance, meeting both the voltage stability and miniaturization requirements of the application.

Samsung Electro-Mechanics has applied proprietary ceramic and electrode material refinement techniques and ultra-precision stacking technologies to expand its lineup of compact, high-capacitance MLCCs for IVI applications and continues to supply these products.

SamsungSize(inch/mm)CapacitanceRated VoltageTCC
CL10X226MP91IN#0603/160822㎌10VdcX6S

(X6S : Capacitance change rate in the temperature range of -55°C to 105°C : ±22%)

Application Example: Automotive AVN (Audio Video Navigation)

Automotive AVN (Audio Video Navigation) enhances drivers’ visibility and provides an immersive entertainment experience through advancements in display technologies such as HUD (Head-Up Display) and curved screens, as well as strengthened connectivity. Furthermore, as autonomous driving becomes more widespread, various advanced technologies such as AVN system integration, voice control, and artificial intelligence are increasingly being adopted. 

Samsung Electro-Mechanics offers a lineup of high-reliability, compact, high-capacitance MLCCs for power stabilization of high-performance ICs applied to AVN, and continues to expand its supply. 

MLCC Trend : Miniaturization, Voltage Stability

  • High Reliability
  • High Capacitance

 → Recommendation dielectric type:  X6S

Size(inch/mm)Rated Voltage[Vdc]TCCCapacitancePart Number MPStatusSampleAvailability
0603/160810VdcX6S22uFCL10X226MP91IN#NEWAvailable
0603/16086.3VdcX6S22uFCL10X226MQ91IN#In MPAvailable
0402/10056.3VdcX6S4.7uFCL05X475MQQ1IN#In MPAvailable
0201/060310VdcX6S1uFCL03X105MPR1IN#In MPAvailable
0201/06036.3VdcX6S1uFCL03X105MQR1IN#In MPAvailable

*The products are AEC-Q200 certified automotive-grade MLCCs designed specifically for IVI (In-Vehicle Infotainment) applications.

Related

Source: Samsung Electro-Mechanics

Recent Posts

Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

13.8.2025
2

Stackpole Extends Voltage of High Temp Chip Resistors

13.8.2025
2

High Voltage MLCCs Meeting the Growing Demand for Efficiency in Power Conversion

12.8.2025
28

Radiation Tolerance of Tantalum and Ceramic Capacitors

8.8.2025
55

TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

7.8.2025
30

Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

6.8.2025
42

Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

6.8.2025
38

Vishay Releases High Saturation 180C Automotive Inductors

6.8.2025
21

How to Calculate the Output Capacitor for a Switching Power Supply

6.8.2025
34

Evaluation and Modeling of Supercapacitors for Reliability of Lifetime Predictions

4.8.2025
29

Upcoming Events

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Nov 4
November 4 @ 12:00 - November 6 @ 14:15 EST

Wirebond Materials, Processes, Reliability and Testing

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version