Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    SCHURTER Releases Coin Cell Supercapacitors for Backup Power

    Skeleton Technologies Expands in U.S. to Power AI Data Centers

    TDK Releases Stackable µPOL 25A Power Modules

    Wk 6 Electronics Supply Chain Digest

    Smoltek CNF-MIM Capacitors Hit 1,000x Lower Leakage

    DigiKey Expands Line Card with 108K Stock Parts and 364 Suppliers

    Würth Elektronik Announces Partner Program

    Vishay Releases Compact 0806 Low‑DCR Power Inductor

    Murata Opens New Ceramic Capacitor Manufacturing and R&D Center in Japan

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

    Calculating Resistance Value of a Flyback RC Snubber 

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    SCHURTER Releases Coin Cell Supercapacitors for Backup Power

    Skeleton Technologies Expands in U.S. to Power AI Data Centers

    TDK Releases Stackable µPOL 25A Power Modules

    Wk 6 Electronics Supply Chain Digest

    Smoltek CNF-MIM Capacitors Hit 1,000x Lower Leakage

    DigiKey Expands Line Card with 108K Stock Parts and 364 Suppliers

    Würth Elektronik Announces Partner Program

    Vishay Releases Compact 0806 Low‑DCR Power Inductor

    Murata Opens New Ceramic Capacitor Manufacturing and R&D Center in Japan

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

    Calculating Resistance Value of a Flyback RC Snubber 

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

SCHURTER Releases Coin Cell Supercapacitors for Backup Power

10.2.2026
Reading Time: 6 mins read
A A

SCHURTER has introduced a new series of 5.5V coin cell supercapacitors designed as compact energy storage elements for low‑voltage electronics.

These SCHURTER supercapacitor devices target engineers who need fast charge/discharge capability and long cycle life for backup, ride‑through, and peak‑power support in space‑constrained designs.

RelatedPosts

SCHURTER APO Pyrofuse Brings Active Safety for High-Voltage Systems

SCHURTER Releases High Performance EV-Fuse

SCHURTER Releases Chip Fuse for ATEX and Precision Applications

Key features and benefits

Coin cell supercapacitors bridge the gap between conventional capacitors and rechargeable batteries in terms of energy and power handling.

Key characteristics of SCHURTER’s new coin cell supercapacitors include:

  • Form factor options:
    • SCCA series for horizontal mounting
    • SCCC series for vertical mounting
  • Operating in systems up to 5.5 V according to the manufacturer datasheet.
  • Capacitance range from 100 mF up to 1,500 mF according to the manufacturer datasheet.
  • Coin‑cell style package for compact board‑level integration.

From a circuit design perspective, these parts behave like high‑value capacitors with:

  • High power density, enabling very rapid charge and discharge.
  • Long cycle life, tolerating many more charge/discharge cycles than typical rechargeable batteries.
  • Fast response to load transients, making them suitable to support short, high current peaks and to buffer brief supply interruptions.

In practical terms, the lower energy density versus batteries means they will not replace a primary energy source for long‑duration supply, but they can excel wherever quick bursts of energy or reliable short‑term backup are needed.

Typical applications

SCHURTER positions the coin cell supercapacitors as a solution for a broad range of low‑voltage electronics that require short‑term energy storage.

Typical use cases include:

  • Real‑time clock (RTC) backup in microcontroller‑based systems.
  • Memory backup to retain volatile data during brief power outages.
  • Battery swap ride‑through, keeping logic and configuration alive while the main battery is replaced.
  • LED or audible alarm drivers that must operate briefly without the main supply.
  • Backup power supplies in small electronic devices, including portable or handheld equipment.
  • Support in renewable energy systems and medical devices where short‑term buffering and high cycle life are important.

For many of these applications, the coin cell supercapacitor can either replace a small rechargeable backup battery or be used alongside it to improve peak power capability and extend battery lifetime.

Technical highlights

The core technical parameters defined by SCHURTER for these coin cell supercapacitors are:

  • System voltage: up to 5.5 V (refer to series‑specific datasheet for exact ratings).
  • Capacitance: from 100 mF to 1,500 mF depending on variant.
  • Mounting style:
    • SCCA: horizontal mount coin cell supercapacitor.
    • SCCC: vertical mount coin cell supercapacitor.

From a system point of view:

  • The relatively high capacitance in a coin‑cell footprint allows sufficient stored charge for seconds‑level backup or ride‑through at low currents.
  • The high power density supports pulses of current where a conventional small electrolytic or ceramic might not provide enough energy without significant voltage droop.
  • The supercapacitor technology supports a large number of charge/discharge cycles, which is beneficial in designs that frequently switch between active, sleep, and backup modes.

Engineers should refer to the SCCA and SCCC datasheets for detailed electrical characteristics, leakage, ESR, temperature behavior, and lifetime data when finalizing their design.

Design‑in notes for engineers

When designing in coin cell supercapacitors such as SCHURTER’s SCCA and SCCC series, engineers should consider:

  • Energy budget:
    • Calculate the energy requirement of the load during backup or ride‑through using the expected current, time, and minimum acceptable voltage.
    • Select the capacitance and operating voltage so that the stored energy covers this budget with margin.
  • Voltage rating and derating:
    • Keep the working voltage below the maximum 5.5 V rating, with appropriate derating to enhance reliability and lifetime according to the datasheet guidance.
  • ESR and pulse current:
    • Check ESR values to ensure that voltage droop at peak current remains within acceptable limits for the load.
  • Mounting orientation and footprint:
    • Choose SCCA (horizontal) or SCCC (vertical) depending on board height constraints and mechanical design.
    • Verify footprint, keep‑out area, and any mechanical support needed under shock or vibration.
  • Charging and protection:
    • Implement controlled charging, current limiting, and any required protection circuitry recommended by the manufacturer to avoid overstress.
  • System‑level reliability:
    • Consider the impact of temperature, cycling frequency, and storage conditions on long‑term performance, and confirm lifetime figures in the datasheet.

For purchasing and component engineering teams, the presence of both horizontal and vertical versions in the same technology family can simplify AVL management while allowing mechanical flexibility across multiple designs.

Source

This article is based on information provided in SCHURTER’s official press release on the introduction of their SCCA and SCCC coin cell supercapacitors, complemented with general engineering context for design‑in and application use.

References

  1. SCHURTER press release: New coin cell supercapacitors
  2. SCHURTER SCCA coin cell supercapacitor datasheet
  3. SCHURTER SCCC coin cell supercapacitor datasheet

Related

Recent Posts

Skeleton Technologies Expands in U.S. to Power AI Data Centers

9.2.2026
10

TDK Releases Stackable µPOL 25A Power Modules

9.2.2026
11

Smoltek CNF-MIM Capacitors Hit 1,000x Lower Leakage

6.2.2026
19

Vishay Releases Compact 0806 Low‑DCR Power Inductor

5.2.2026
31

Murata Opens New Ceramic Capacitor Manufacturing and R&D Center in Japan

5.2.2026
72

Murata Publishes Power Delivery Guide for AI Servers

4.2.2026
95

Mechanical Drift Indicator of Tantalum Capacitor Anodes Degradation under Reverse Bias

3.2.2026
38

Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

2.2.2026
30

CMSE 2026 Announces Call for Presentations on High-Reliability Military and Space Electronics

28.1.2026
51

Upcoming Events

Feb 11
16:00 - 17:00 CET

What’s Next in Power Electronics Design

Feb 24
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

Mar 3
16:00 - 17:00 CET

Cybersecurity at the Eleventh Hour – from RED to CRA – Information and Discussion

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • How Metal Prices Are Driving Passive Component Price Hikes

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Degradation of Capacitors and its Failure Mechanisms

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version