Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Wk 45 Electronics Supply Chain Digest

    Transformer Safety IEC 61558 Standard

    ESR of Capacitors, Measurements and Applications

    Murata Christophe Pottier Appointed President of EPCIA

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    YAGEO Unveils Compact 2.4 GHz SMD Antenna

    KYOCERA AVX Releases Antenna for Iridium Satellite IoT Applications

    Molex Releases Industry-First Quad-Row Board-to-Board Connectors with EMI Shields

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Wk 45 Electronics Supply Chain Digest

    Transformer Safety IEC 61558 Standard

    ESR of Capacitors, Measurements and Applications

    Murata Christophe Pottier Appointed President of EPCIA

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    YAGEO Unveils Compact 2.4 GHz SMD Antenna

    KYOCERA AVX Releases Antenna for Iridium Satellite IoT Applications

    Molex Releases Industry-First Quad-Row Board-to-Board Connectors with EMI Shields

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Skeleton to Launch Fully Automated Supercapacitor Production Line

18.1.2023
Reading Time: 3 mins read
A A

Skeleton Technologies announced building of the world’s largest and most modern supercapacitor factory in Saxony, Germany.

The first-of-its-kind Leipzig Superfactory will include the inaugural fully automated supercapacitor production line. 

RelatedPosts

Skeleton Releases GrapheneGPU to Reduce AI Energy Consumption by 44% and Boosts Power by 40%

Skeleton Supercapacitors Contribute to Sustainable AI

Skeleton is Opening a New Research and Development Center in Finland 

With the expected Start-Of-Production in 2024, construction is already underway for Leipzig Superfactory. Designed in cooperation with Siemens Digital Industries, it will increase Skeleton’s production capacity 40-fold, allowing us to meet the increasing demand from electrification and decarbonization projects globally.

Skeleton Technologies’ objective is to make its energy storage devices more affordable. The economies of scale provided by this new technology, combined with the use of our patented Curved Graphene raw material, will dramatically drive the production costs down, boosting the competitiveness of supercapacitors as the key enabling technology for the future of electrification. After the completion of the 5-year scale-up project, production costs are expected to lower by almost 90%.

Leading the automation of supercapacitor production

“Globally, only islands of automation are used at supercapacitor production sites. While the individual processes are automated, these islands of automation are separated by manual assembly and transport,” said Julius Beck, Senior Automation Engineer at Skeleton. Despite sharing commonalities with other energy storage devices like lithium-ion batteries, supercapacitor production is not as evolved due to its youth and around 50 times smaller market size.

“Globally, only islands of automation are used at supercapacitor production sites.”

Supercapacitor production consists of five main steps from electrode coating to cell testing. Let’s look at the first step to get a better understanding of the difference between semi-automated and automated production. 

  1. Electrode manufacturing (mixing, coating, calendering, slitting)
  2. Jellyroll winding 
  3. Roll-to-Cell assembly  
  4. Cell filling and closing 
  5. Cell testing 

“Current electrode production is accomplished by a partially automated coating line that gives feedback on product quality, but still requires permanent operator attention as well as diligent supervision of the product tracking system,” explains Skeleton’s Scale Up Equipment Launch Manager Taavi Pärtin. In addition, some quality tests must be conducted off-line, delaying feedback and corrective actions to the production operations.  

The electrode is only coated on one side and rolls must be brought back to the beginning of the line to be coated from the second side. In fully automated cell production, electrode production will still be based on wet coating techniques, but the implementation of a novel coating technique enables double-side coating that would half the throughput time per meter. 

According to Julius Beck, the automated line will utilize machine learning and in a later stage artificial intelligence to link quality control systems (coating thickness measurement by β-rays, coating width control by high-quality imaging techniques, humidity sensing by IR sensors) with production process control adjustments (coating head settings, drying oven settings). This link will result in automatic corrections, superior quality, and a more efficient production. 

In electrode calendaring and slitting, the respective electrode rolls will be recognized by radio-frequency identification (RFID) technology, automatically adjusting machine settings as needed and leaving a clearly traceable product through all steps. Hand-over of slit electrodes to cell production processes will be machine directed with the option of being fully automated. 

“All manual inspection steps are removed and replaced with automatic processes.”

Cell assembly, filling and electrical testing production steps are fully automatic and do not require operator influence. “A big upgrade from the current cell production is that all manual inspection steps are removed and replaced with automatic processes that are faster and more reliable,” adds Taavi Pärtin.

Related

Source: Skeleton Technologies

Recent Posts

ESR of Capacitors, Measurements and Applications

7.11.2025
40

Murata Christophe Pottier Appointed President of EPCIA

7.11.2025
12

3-Phase EMI Filter Design, Simulation, Calculation and Test

6.11.2025
48

Smoltek CNF-MIM Capacitors Pass 1,000h Reliability Test

6.11.2025
12

Capacitor Lead Times: October 2025

6.11.2025
66

Paumanok Unveils Aluminum Capacitor Foils World Markets Study 2025-2030

6.11.2025
15

Microhardness — the Hidden Key to Understanding MnOx Cathode Quality in Tantalum Capacitors

3.11.2025
28

Samsung to Invest in its Philippine MLCC Facility to Meet Automotive Demand

3.11.2025
44

Lightweight Model for MLCC Appearance Defect Detection

3.11.2025
28

Upcoming Events

Nov 11
17:00 - 18:00 CET

Industrial Applications Demand More from Interconnects in Next-Gen Designs

Nov 12
11:00 - 12:00 CET

PCB Design: Impedance is for everyone!

Nov 12
November 12 @ 12:00 - November 13 @ 14:15 EST

Microelectronic Packaging Failure Modes and Analysis

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version