Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Wk 45 Electronics Supply Chain Digest

    Transformer Safety IEC 61558 Standard

    ESR of Capacitors, Measurements and Applications

    Murata Christophe Pottier Appointed President of EPCIA

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    YAGEO Unveils Compact 2.4 GHz SMD Antenna

    KYOCERA AVX Releases Antenna for Iridium Satellite IoT Applications

    Molex Releases Industry-First Quad-Row Board-to-Board Connectors with EMI Shields

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Wk 45 Electronics Supply Chain Digest

    Transformer Safety IEC 61558 Standard

    ESR of Capacitors, Measurements and Applications

    Murata Christophe Pottier Appointed President of EPCIA

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    YAGEO Unveils Compact 2.4 GHz SMD Antenna

    KYOCERA AVX Releases Antenna for Iridium Satellite IoT Applications

    Molex Releases Industry-First Quad-Row Board-to-Board Connectors with EMI Shields

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

STMicro’s Newest Stepper Motor Driver: A 256-Microstep Driver with Integrated Control Logic Needs Precise Sense Resistors

24.4.2020
Reading Time: 4 mins read
A A

source: All about circuits article

STMicroelectronics offers their new microstepping motor driver that includes control logic and a power stage. Two precise sense resistors play an important role in the PWM current control—for both slow decay and mixed decay current recirculation conditions

RelatedPosts

RF Inductors: Selection and Design Challenges for High-Frequency Circuits

Wk 45 Electronics Supply Chain Digest

Transformer Safety IEC 61558 Standard

ST recently announced their new STSPIN820, which is an advanced microstepping motor driver that is capable of a stepping resolution of 1/256th of a step and integrates both the control logic and power stage in a small 24-pin QFN 4 × 4 mm package. Seems impressive.

 

Featured Figure 1. STSPIN820 microstepping motor driver. Image taken from the datasheet (PDF).

 

With a wide operating voltage range of 7 to 45 V, a host of protection features, and a low standby current of 45µA, this IC could be a good choice for applications such as 3D printers, sewing machines, and robotics.

 

A “Low” RDSon Value

This motor driver’s integrated power stage is advertised as having a low RDSon value (high side + low side) of 1Ω (typical). It seems to me, however, that 1Ω isn’t really all that low. In fact, in my dealings with motor drivers—granted my design experience in this regard is not exceedingly extensive—motor drivers with low RDSon values are in the range of hundreds of milliohms. So I would suggest that 1Ω might be better characterized as a typical RDSon value; if you disagree, let us know in the comments.

 

Figure 2. The STSPIN820’s “low”  RDSon values, from the datasheet (PDF).

 

External Sense Resistors

As noted in the datasheet, this IC requires two external sense resistors (RSNSA and RSNSB), and because these resistors play an important role in the PWM current control—for both slow decay and mixed decay current recirculation conditions—their values must be chosen carefully. Fortunately, ST has provided values for these resistors in a typical application (see image below), and they suggest values for other external passive components. They also offer a trick for easily achieving lower resistor values with higher power ratings; this trick—though it’s probably, hopefully, common knowledge for any electrical engineer—is simply placing multiple resistors in parallel. But hey, maybe ST thought that we might forget about this technique in this particular situation…so thanks, ST, for the reminder.

 

Figure 3. Recommended RSENSE resistor values and other recommended values for external components. Image taken from the datasheet (PDF).

 

Lately I’ve noticed datasheets that don’t offer much in the way of straightforward design guidance, so it’s good to see that ST has taken the time to provide this information.

 

A Set of Protection Features

The STSPIN820 comes with multiple protection features. Though not exactly uncommon among high-end (or even low-end) ICs these days, these features are nonetheless important additions to a reliable, user-friendly motor driver.

  • Short-circuit or overcurrent: Each power output node is protected against overload/overcurrent and short-circuit conditions, including short-to-ground, short-to-VS, and short-circuit between outputs. When an overcurrent condition occurs, the power stage is disabled and the Fault pin is driven low until the overcurrent condition is rectified (see image below).

 

Figure 4. Overcurrent and short-circuit protection management. Diagram taken from the datasheet (PDF).

 

  • Undervoltage lockout (UVLO): During power up, the power stage is disabled—and the Fault pin is forced low—until the voltage on the VS pin (actually, there are two VS pins and they must be at the same voltage) rises above the VS threshold voltage (VSth(ON)), which is 6.0 V (typical). The image below shows the undervoltage lockout protection scheme.

 

Figure 5. Undervoltage lockout (UVLO) protection management. Diagram taken from the datasheet (PDF).

 

  • Thermal shutdown: When the IC’s junction temperature reaches its threshold (TjSD = 160°C), the power stage is disabled and the Fault pin is driven low. Once the junction temperature retreats back to less than 120°C (which includes the thermal shutdown hysteresis value of 40°C), the fault condition is removed (see the image below).

 

Figure 6. Thermal shutdown protection management. Diagram taken from the datasheet (PDF).

 

The Microstepping Sequencer

For this device, ST uses three Mode inputs for achieving a stepping range from full-step to 1/256th of a step. As shown in the image below, each of the three mode settings (MODE1, MODE2, and MODE3) are clocked in on the rising edge of STCK (step clock input). And to allow for a very quick stepper motor response, the three mode settings can be changed at any time, and these changes are applied immediately.

 

Figure 7. Step mode configuration using the MODEx inputs, from the datasheet (PDF).

Related

Recent Posts

Molex Releases Industry-First Quad-Row Board-to-Board Connectors with EMI Shields

6.11.2025
9

Capacitor Lead Times: October 2025

6.11.2025
66

Coilcraft Introduces Ultra-Low Loss Shielded Power Inductors

6.11.2025
16

Würth Elektronik Expands its MagI³C-VDMM MicroModules

5.11.2025
14

Littelfuse Releases Load-Powered Compact Relay

5.11.2025
16

Samtec Expands Offering of Slim, High-Density HD Array Connectors

30.10.2025
10

Bourns Unveils High-Precision Wirewound Resistor with Long-Term Stability

30.10.2025
24

Murata Expands Automotive Metal Frame Y2/X1 Safety MLCC Capacitors to 500V

30.10.2025
45

Exxelia 4-Terminal Safety Capacitors Compliant with NF F 62-102 Railway Standard

27.10.2025
33

Upcoming Events

Nov 11
17:00 - 18:00 CET

Industrial Applications Demand More from Interconnects in Next-Gen Designs

Nov 12
11:00 - 12:00 CET

PCB Design: Impedance is for everyone!

Nov 12
November 12 @ 12:00 - November 13 @ 14:15 EST

Microelectronic Packaging Failure Modes and Analysis

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version