Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    KYOCERA AVX Releases Compact High-Directivity Couplers

    Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

    Wk 18 Electronics Supply Chain Digest

    YAGEO Releases High Current SMD Common Mode Choke With Shape Core Construction

    Murata and NIMS Built New Database of Dielectric Material Properties

    Tariffs Crush Sales Sentiment in April 2025 ECST Results

    High-Density PCB Assemblies For Space Applications

    Solid State Polymer Multilayer Capacitors For High Temperature Application

    Graphene-Based BOSC Bank Of Supercapacitor Cells

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    EMC Challenges for High Speed Signal Immunity and Low EMI

    MOSFET Gate Drive Resistors Power Losses

    Modified Magnetic Reluctance Equivalent Circuit and its Implications

    Improving Common Mode Noise Reduction while Decreasing BOM

    Die and Wire PCB Bonding Explained

    Rogowski Coil Current Sensor Explained

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    KYOCERA AVX Releases Compact High-Directivity Couplers

    Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

    Wk 18 Electronics Supply Chain Digest

    YAGEO Releases High Current SMD Common Mode Choke With Shape Core Construction

    Murata and NIMS Built New Database of Dielectric Material Properties

    Tariffs Crush Sales Sentiment in April 2025 ECST Results

    High-Density PCB Assemblies For Space Applications

    Solid State Polymer Multilayer Capacitors For High Temperature Application

    Graphene-Based BOSC Bank Of Supercapacitor Cells

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    EMC Challenges for High Speed Signal Immunity and Low EMI

    MOSFET Gate Drive Resistors Power Losses

    Modified Magnetic Reluctance Equivalent Circuit and its Implications

    Improving Common Mode Noise Reduction while Decreasing BOM

    Die and Wire PCB Bonding Explained

    Rogowski Coil Current Sensor Explained

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Stretching a Metal Into an Insulator

15.3.2017
Reading Time: 3 mins read
A A

source: Newswire article

Straining a thin film controllably allows tuning of the materials’ magnetic, electronic, and catalytic properties, essential for new energy and electronic devices.

RelatedPosts

KYOCERA AVX Releases Compact High-Directivity Couplers

Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

Wk 18 Electronics Supply Chain Digest

The Science

To create materials for new energy applications, scientists use heat and strain to remove oxygen atoms. However, stretching a well-ordered, thin film of strontium cobaltite lets the oxygen atoms move more freely through channels. The motion increases the escape of oxygen, and thus increases the number of vacancies. Impressively, the team created the strain-induced oxygen vacancies at temperatures as low as 300 °C, which is lower than previously possible, and in environments that usually decrease oxygen vacancies. Further, this higher vacancy concentration converted a metal into an insulator.

The Impact

Precise tailoring of material properties with strain (through changes in the oxygen vacancy concentration) is a new method to control magnetic, electronic, and catalytic properties in transition metal oxides for emerging energy and device technologies. The ability to decouple the oxygen vacancy concentration from its typical dependence on the operational environment is useful. Decoupling allows for effectively designing oxide materials with a specific ratio of oxygen atoms. The material used in this research is an oxygen “sponge.” It has enhanced catalytic activity for turning carbon monoxide into carbon dioxide at temperatures useful for rechargeable batteries, fuel cells, and more.

Summary

Stretching or compressing a material creates strain that can be a powerful tool to control oxygen vacancy concentration, as opposed to traditional methods that require adding impurities or high temperatures. Scientists led by Oak Ridge National Laboratory have used strain to tune oxygen content in epitaxial strontium cobaltite (SrCoO3-δ) thin films grown by a technique called pulsed laser epitaxy. At relatively low temperatures, as low as 300 °C, stretching the material by 2% lowered the oxygen activation barrier by roughly 30% and simultaneously reduced the oxygen enthalpy. This caused the oxygen content to decrease, creating oxygen vacancies in the crystalline structure. Previous attempts to remove oxygen at such low temperatures were not successful. To understand the experimental observation of the strong coupling between strain and oxygen stoichiometry, the team performed first-principles density functional theory calculations. Specifically, computing the energies for moving an oxygen atom into one of the vacancy sites (enthalpy) and for diffusion of the oxygen atoms from one vacancy site to another in the open network structure were keys to predicting the ground state and transport properties. These calculations showed that stretching decreased the energetic stability of the oxygen atoms in the crystalline structure, allowing for increased mobility of oxygen atoms at lower temperatures than previously possible. In contrast, compression increased the stability of oxygen atoms, immobilizing them. Stretching at these low temperatures and even in environments that usually introduce oxygen into materials (oxidizing environments) decreased oxygen concentration and increased the number of oxygen vacancies. These strain-induced defects resulted in a change of the materials’ electronic properties, from a ferromagnetic metal to an antiferromagnetic insulator, with increasing strain. The research shows that strain can be used as a knob for fine tuning of oxygen concentrations, allowing the control of the materials’ magnetic, electronic, and catalytic properties without conventional cationic dopants. The results will have immediate benefits in improving ionic conduction in solar oxide fuel cells and developing high-performance oxygen sensors and membranes.

Funding

This work was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Science and Engineering Division, and included research at the Advanced Photon Source, a DOE Office of Science user facility.

Publications

J.R. Petrie, C. Mitra, H. Jeen, W.S. Choi, T.L. Meyer, F.A. Reboredo, J.W. Freeland, G. Eres, and H.N. Lee, “Strain control of oxygen vacancies in epitaxial strontium cobaltite films.” Advanced Functional Materials 26, 1564 (2016). [DOI: 10.1002/adfm.201504868]

Related

Recent Posts

Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

6.5.2025
33

YAGEO Releases High Current SMD Common Mode Choke With Shape Core Construction

5.5.2025
17

Murata and NIMS Built New Database of Dielectric Material Properties

5.5.2025
39

Tariffs Crush Sales Sentiment in April 2025 ECST Results

5.5.2025
57

Solid State Polymer Multilayer Capacitors For High Temperature Application

2.5.2025
21

Graphene-Based BOSC Bank Of Supercapacitor Cells

2.5.2025
12

Hybrid Energy Storage System for Nanosatellite Applications

1.5.2025
9

COTS-Plus Bulk Tantalum Capacitor for LEO Flight Platforms

29.4.2025
37

Würth Elektronik Offers New Power Supplies Development Kit

29.4.2025
37

Bourns Extends Shielded Power Inductors by Four New Series

29.4.2025
18

Upcoming Events

May 14
11:00 - 12:00 CEST

Reliable RIGID.flex PCBs for Critical Applications – Made in Europe

May 28
16:00 - 17:00 CEST

Power Over Data Line

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Tariffs Crush Sales Sentiment in April 2025 ECST Results

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0
  • Fuse Selection Guidelines

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version