Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Releases 140C Compact Vibration Robust Automotive Aluminum Capacitors

    DigiKey Presents Factory Tomorrow Season 5 Video Series

    Samsung MLCCs Lineup for In-Vehicle Infotainment

    source: Samtec

    Best Practices for Cable Management in High-Speed and High-Density Systems

    Würth Elektronik Unveils Compact Common-Mode Data Lines Chokes

    Bourns Releases TCO 240 Watt USB Mini-Breaker

    Littelfuse Adds 600W Automotive TVS Diodes for High-Energy Transient Protection

    Vishay Releases Harsh Environment Robust DC-Link Film Capacitor

    Bourns Releases Automotive High Creepage and Clearance Transformer

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Releases 140C Compact Vibration Robust Automotive Aluminum Capacitors

    DigiKey Presents Factory Tomorrow Season 5 Video Series

    Samsung MLCCs Lineup for In-Vehicle Infotainment

    source: Samtec

    Best Practices for Cable Management in High-Speed and High-Density Systems

    Würth Elektronik Unveils Compact Common-Mode Data Lines Chokes

    Bourns Releases TCO 240 Watt USB Mini-Breaker

    Littelfuse Adds 600W Automotive TVS Diodes for High-Energy Transient Protection

    Vishay Releases Harsh Environment Robust DC-Link Film Capacitor

    Bourns Releases Automotive High Creepage and Clearance Transformer

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Sustainable Chemistry students print their way to new and powerful supercapacitors

20.6.2017
Reading Time: 3 mins read
A A

source: University of Amsterdam news

Students at the University of Amsterdam’s Research Priority Area Sustainable Chemistry have tripled the specific capacitance of nitrogen-doped carbons: new materials with potential applications in fast energy storage (e.g. for regenerative breaking or fast charging of cellphones). Their experiments required new pieces of equipment which were designed and produced in the lab using 3D printing.

RelatedPosts

TDK Releases 140C Compact Vibration Robust Automotive Aluminum Capacitors

DigiKey Presents Factory Tomorrow Season 5 Video Series

Samsung MLCCs Lineup for In-Vehicle Infotainment

The Amsterdam students investigated the factors that govern different modes of supercapacitance in the new supercapacitor material that was invented at the University of Amsterdam (UvA). They were able to tune the materials’ surface structure and functional groups in order to maximise fast faradaic reactions at the surface, storing energy in transient chemical bonds. Their results have recently been published by the high-impact international journal ChemSusChem.

Fast charge/discharge cycles
The transition to sustainable energy sources requires efficient energy storage solutions. Each renewable energy source (be it wind, solar, geothermal) sets its own requirements for energy density, power density, life-time, cost, and size. Supercapacitors (also called electrochemical capacitors or ultra-capacitors) are important power sources for applications requiring fast charge/discharge cycles.

Supercapacitors operate via two mechanisms. The first is electric double layer capacitance (EDLC), in which charging the electrode leads to adsorption and desorption of electrolyte counter-ions at its surface. This sorption is fast and reversible, determining the high power density of the device and its longevity. The second mechanism is pseudo-capacitance (PC), wherein fast faradaic reactions occur at the surface, storing charge in chemical bonds and boosting the energy density. These redox reactions are fast enough so that diffusion limitations are small and power density remains high.

Recently, a new type of supercapacitor material made from hierarchically porous nitrogen-doped carbon was invented by Dr David Eisenberg and Prof. Gadi Rothenberg of the Van ‘t Hoff Institute for Molecular Sciences.

Building on that invention, sustainable chemistry students Jasper Biemolt and Ilse Denekamp set out to investigate in their MSc project the factors that govern energy storage at the surfaces of these materials via EDLC and PC. They found that by tuning the synthesis conditions they could tailor the number and type of nitrogen functionalities at the surface, thereby enhancing the capacitance nearly threefold.

3D printed ‘minion’
The measurements required a dedicated setup, made from isolating materials to high specifications of mechanical pressure and structural constraints. PhD student Thierry Slot designed the device and printed it on a 3D printer using high-density polystyrene. The device (named “The Minion” for its yellow and green colors) enabled measurement of the capacitance of the new materials.The Amsterdam team included the CAD files to enable researchers who wish to repeat the experiments to 3D-print their own equipment. Rothenberg envisions that more and more researchers will include such files as supporting information with scientific papers:

“We are just starting to realise the potential of 3D printing for the design and printing of tailored-to-purpose lab equipment. As 3D printing becomes more accessible and more types of materials can be printed, designing of equipment for specific experiments will also become easier, and by publishing the CAD files researchers across the globe will be able to print the same equipment in their own labs”.

Surface reactions supercapacitor

The different types of nitrogen functionalities on nitrogen-doped carbons and their corresponding pseudo-capacitive reactions. Image: HIMS.
Publication
J. Biemolt, I.M. Denekamp, T.K. Slot, G. Rothenberg and D. Eisenberg: Boosting the supercapacitance of nitrogen-doped carbon by tuning surface functionalities. ChemSusChem, 2017, published online 6 June 2017, DOI: 10.1002/cssc.201700902

 

featured image: The 3D printed “Minion” device enables measurement of the capacitance of the new materials. Photo: HIMS.

 

Related

Recent Posts

TDK Releases 140C Compact Vibration Robust Automotive Aluminum Capacitors

5.9.2025
16

Samsung MLCCs Lineup for In-Vehicle Infotainment

4.9.2025
26

Vishay Releases Harsh Environment Robust DC-Link Film Capacitor

2.9.2025
35

Influence of Tantalum Capacitor Pellets Size on Stability During Oxide Film Formation

29.8.2025
37

Modelithics Release Discrete Components Optimization Article for RF/Microwave Designers

28.8.2025
14

Samsung Extends Capacitance of MLCC 0805 X7T 250V to 100nF

28.8.2025
34

Samsung Releases Ultra–High-Capacitance 4.7uF 2.5V MLCC in 0201 for AI GPU

27.8.2025
44

Non-Linear MLCC Class II Capacitor Measurements Challenges

19.8.2025
69

Researchers Demonstrated HfO Anti-Ferroelectric Flexible Capacitors

19.8.2025
20

High Voltage MLCCs Meeting the Growing Demand for Efficiency in Power Conversion

12.8.2025
208

Upcoming Events

Sep 16
17:00 - 18:00 CEST

EMI Shielding Challenges

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Core Materials, Permeability and Their Losses

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version