• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

Thermocouple physics – How it works

4.10.2016

Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

21.5.2022

Coverlay – More than a Flexible Soldermask Substitute; WE Webinar

19.5.2022

Stackpole Presents High Current Metal Shunt Resistors

19.5.2022

Coilcraft Introduced Ultra-Low Loss Shielded Power Inductors

19.5.2022
  • Home
  • Privacy Policy
  • EPCI Advertisement & Membership
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

    Stackpole Presents High Current Metal Shunt Resistors

    Coilcraft Introduced Ultra-Low Loss Shielded Power Inductors

    Panasonic Releases SMD Automotive Power Choke Coil

    GAM Introduces Tantalum and Niobium Powders for Cold Spray Applications

    Skeleton Curved Graphene Scientists Named as European Inventor Award 2022 Finalists

    Flexible Cable Supercapacitor Application in EVs and HEVs

    Snubber Capacitor Selection for SiC-Based Switching Converters

    Vishay Releases High Precision Compact Thin Film Wraparound Chip Resistor 

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

    Coverlay – More than a Flexible Soldermask Substitute; WE Webinar

    Soldering THT Components by SMD Reflow Assembly; WE Webinar

    Strain Gage Resistive Sensor Simulation; Vishay Video

    EMC Filters Explained – from Component to Design; WE Webinar

    How to Avoid EMI Noise on Data Cable by Isolated Power Module; WE askLorandt Video

    Introduction to Wireless Power Transfer; WE Webinar

    How to Pass Conducted Emissions Using Line Filters; WE Webinar

    EMI Debugging of a Low Power Buck Converter; WE Webinar

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Preferred Suppliers
  • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

    Stackpole Presents High Current Metal Shunt Resistors

    Coilcraft Introduced Ultra-Low Loss Shielded Power Inductors

    Panasonic Releases SMD Automotive Power Choke Coil

    GAM Introduces Tantalum and Niobium Powders for Cold Spray Applications

    Skeleton Curved Graphene Scientists Named as European Inventor Award 2022 Finalists

    Flexible Cable Supercapacitor Application in EVs and HEVs

    Snubber Capacitor Selection for SiC-Based Switching Converters

    Vishay Releases High Precision Compact Thin Film Wraparound Chip Resistor 

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

    Coverlay – More than a Flexible Soldermask Substitute; WE Webinar

    Soldering THT Components by SMD Reflow Assembly; WE Webinar

    Strain Gage Resistive Sensor Simulation; Vishay Video

    EMC Filters Explained – from Component to Design; WE Webinar

    How to Avoid EMI Noise on Data Cable by Isolated Power Module; WE askLorandt Video

    Introduction to Wireless Power Transfer; WE Webinar

    How to Pass Conducted Emissions Using Line Filters; WE Webinar

    EMI Debugging of a Low Power Buck Converter; WE Webinar

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Preferred Suppliers
  • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Thermocouple physics – How it works

4.10.2016
Reading Time: 3 mins read
0 0
0
SHARES
1.6k
VIEWS

source: EDN article

Martin Rowe -October 02, 2016
Early in my editorial career, I wrote an article about thermocouples in Test & Measurement World where I incorrectly said that a voltage proportional to the junction temperature develops across the junction of two dissimilar metals. A reader wrote me a detailed letter (on paper, no e-mail then) explaining the Seebeck effect. Ever since, whenever I see anything about thermocouples using the incorrect description, I realize that yet another author is perpetuating the same old error.

RelatedPosts

Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

Coverlay – More than a Flexible Soldermask Substitute; WE Webinar

Stackpole Presents High Current Metal Shunt Resistors

When Gordon Lee sent me his article Thermocouples: Basic principles and design essentials, I immediately looked for how he described thermocouple physics. He got it right. Jim Williams, however, made the same mistake I made.

While skimming through some EDN print issues, I ran across a letter to the editor written by Bill Dubé in the September 1, 1988 issue (Signals and noise, p.32). Dubé pointed out that Jim Williams made the same mistake in an article on thermocouple circuits from the May 26, 1988 issue, Clever techniques improve thermocouple measurements. EDN’s editors notified Williams of the letter. Jim did his homework and replied that he indeed got it wrong. See the text of the letter below, reprinted from the September 1 issue.

Some 20+ years after I made the same mistake, I feel exonerated, even though two wrongs don’t make a right (except in digital logic).

Thermocouple misconceptions are common

Jim Williams’s fine article “Clever techniques improve thermocouple measurements” (EDN, May 26, 1988, pg 145) is sadly flawed by a basic misunderstanding of the physics of thermocouples. It is a common misconception that the voltage of a thermocouple is generated across the junction. This is simply not true. The voltage is generated along the wires and is driven by the temperature difference between the sensing junction and the reference (“cold”) junction. For a given temperature difference, the two dissimilar wires generate unequal voltages. The voltage appearing across the thermocouple circuit at the reference junction is the difference between these unequal voltages.

The more technical explanation is that for a given temperature gradient dT/dx, an electric field dV/dx is generated. This electric field is a function of both dT/dx and absolute temperature. The local value of the difference dV/dT for a given alloy pair at a particular temperature is called the Seebeck coefficient. If the integral of the Seebeck coefficient is evaluated between-the sensing junction and the reference junction, the thermoelectric voltage results.

Thermal voltages in thermocouple circuits are always the result of thermal gradients. If a section of a thermocouple circuit has an unknown or undesirable Seebeck coefficient, then its influence can be diminished by suppressing thermal gradients in that section. For example, when you make a connection in a thermocouple circuit, it’s best to thermally anchor each of the wires to a common temperature before they reach the electrical connection point. The connection point should also be thermally anchored to this temperature. This procedure tends to suppress thermal gradients across the oxides, unknown alloys, etc, that make up the connection. If the thermal gradients are sup pressed, spurious thermal voltages will be reduced.

I hope this explanation will help clear up some of the misconceptions about the physics of thermocouples. Jim Williams is not alone in his misunderstanding—I have seen a remarkably similar treatment of thermocouples in a high-school physics text that is currently being used by the Denver School Dept.

Bill Dubé
Mechanical Engineer Denver, CO

 

Jim Williams responds:
Some friends and I have reviewed Bill Dubé’s comments and found them to be quite correct. As such, I find myself corrected, educated, and apologizing for any confusion I may have caused EDN’s readers. Although Bill’s distinctions are subtle, they are still the more correct interpretation, and I appreciate his remarks.

Related Posts

Capacitors

GAM Introduces Tantalum and Niobium Powders for Cold Spray Applications

19.5.2022
37
Capacitors

ELOHIM Develops Ultra-Small Size High-Density Silicon Capacitors

25.4.2022
272
Inductors

Researchers Developed Neodymium Reduced High Performance Magnets

25.4.2022
51

Popular Posts

  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0
  • Dielectric Constant and its Effects on the Properties of a Capacitor

    7 shares
    Share 7 Tweet 0
  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0

Newsletter Subscription

 

  • Home
  • Privacy Policy
  • EPCI Advertisement & Membership
  • About

© 2021 EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© 2021 EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.