Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    2025 Annual Capacitor Technology Dossier

    Panasonic High Precision Chip Resistors Bridge Gap Between Thin and Thick Technology

    ROHM Extends 2012 Shunt Resistors Power Rating up to 1.25 W

    January 2026 Interconnect, Passives and Electromechanical Components Market Insights

    Passive Components in Quantum Computing

    0603 Automotive Chip Varistors as TVS Diode Replacements, TDK Tech Note

    Miniaturization of MLCCs and Electrolytics, KAVX Tech Chat

    Exxelia Offers Custom Naval Transformers and Inductors

    Researchers Demonstrated 32nm Aluminum Vacuum Gap Capacitor

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    2025 Annual Capacitor Technology Dossier

    Panasonic High Precision Chip Resistors Bridge Gap Between Thin and Thick Technology

    ROHM Extends 2012 Shunt Resistors Power Rating up to 1.25 W

    January 2026 Interconnect, Passives and Electromechanical Components Market Insights

    Passive Components in Quantum Computing

    0603 Automotive Chip Varistors as TVS Diode Replacements, TDK Tech Note

    Miniaturization of MLCCs and Electrolytics, KAVX Tech Chat

    Exxelia Offers Custom Naval Transformers and Inductors

    Researchers Demonstrated 32nm Aluminum Vacuum Gap Capacitor

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Titanium disulfide supercapacitor could be a competitive alternative to lithium-ion batteries

23.6.2018
Reading Time: 3 mins read
A A

Source: Newswise news

A newly discovered supercapacitor has the highest energy density of any comparable system as demonstrated by a team of Molecular Foundry users and staff. These ultracapacitors can be charged and discharged repeatedly. The team’s new design approach also makes them very stable.

RelatedPosts

2025 Annual Capacitor Technology Dossier

Panasonic High Precision Chip Resistors Bridge Gap Between Thin and Thick Technology

ROHM Extends 2012 Shunt Resistors Power Rating up to 1.25 W

Featured image: A scanning electron microscopy image of vertically aligned carbon nanotube electrodes coated with titanium disulfide deposited one atomic layer at a time. The magnified inset shows individual titanium disulfide coated carbon nanotube electrodes (μm=micrometer). Image credit: Berkeley Lab

The Impact
The new supercapacitor performs far better than earlier versions. It is less likely to self-discharge or short circuit. Specifically, it has an operating voltage window three times larger than before. Further, it has the highest energy density of any similar capacitor. The higher voltage and high energy density mean the battery can achieve higher power and longer operating time—suggesting that they could be a competitive alternative to lithium batteries.

Summary

Capacitors are electrical components that store energy and are widely used in electronic devices. Typical supercapacitors, named for their ability to store more electrical charge than standard capacitors, store charge “physically” through the buildup of charges on their surfaces. On the other hand, pseudocapacitors can store charge “chemically” through redox reactions where one species transfers electrons to another, similar to a battery.

Pseudocapacitors can store as much charge as some batteries; however, while a battery charges and discharges over several hours (for example, charging and using your cell phone or laptop), pseudocapacitors can operate much faster, on the scale of tens of seconds to several minutes. Supercapacitors often show high power density and long operation lifetimes but are limited by having low energy density. While pseudocapacitors store more energy, their widespread use has been hampered by their narrow electrochemical voltage window, which is the voltage range where the electrode materials are stable.

On its own, titanium disulfide is light, cheap, and has many potential benefits if used in a lithium-based energy storage system, but the material degrades rapidly and has relatively low conductivity. It’s been previously shown that coating nanocrystalline titanium disulfide onto vertically aligned carbon nanotubes (VACNTs) can form highly conductive, 3-D porous networks to improve electrical conductivity, increase surface area, and stabilize the electrochemical reactions. However, the existing methods for creating these pseudocapacitors have problems with uniform coverage, contamination, and high toxicity.

The researchers from the University of California at Berkeley worked with the Molecular Foundry’s Adam Schwartzberg, an expert in atomic layer deposition (ALD), to develop a two-step process combining ALD with a chemical vapor deposition (CVD) process to make coated VACNT electrodes that have precisely defined nanostructures. When used with an ultra-high concentration lithium-ion electrolyte, the “hybrid” supercapacitor has an operating voltage window three times larger than before, making it comparable to organic electrolyte systems. The hybrid supercapacitor also has the highest energy density of any other pseudocapacitor. The new capabilities could provide an alternative to lithium batteries.

Scientists could use the new fabrication method combining ALD and CVD to coat titanium disulfide or other transition metal materials onto a variety of substrates. These coatings could lead to further advances in the next generation of energy storage systems.

 


Funding
This work was performed in part at the Molecular Foundry, a user facility supported by the Department of Energy, Office of Science, Office of Basic Energy Sciences and supported in part by Berkeley Sensor and Actuator Center, a National Science Foundation/ Industry/University Research Collaboration Center.

Publications
X. Zang, C. Shen, E. Kao, R. Warren, R. Zhang, K.S. Teh, J. Zhong, M. Wei, B. Li, Y. Chu, M. Sanghadasa, A. Schwartzberg, and L. Lin, “Titanium disulfide coated carbon nanotube hybrid electrodes enable high energy density symmetric pseudocapacitors.” Advanced Materials 30, 1704754 (2017). [DOI: 10.1002/adma.201704754]

Related

Recent Posts

2025 Annual Capacitor Technology Dossier

23.1.2026
18

Passive Components in Quantum Computing

22.1.2026
62

Miniaturization of MLCCs and Electrolytics, KAVX Tech Chat

21.1.2026
46

Researchers Demonstrated 32nm Aluminum Vacuum Gap Capacitor

20.1.2026
32

Conductive Polymer Capacitor Market and Design‑In Guide to 2035

20.1.2026
105

TDK Releases High Performance 105C DC Link Film Capacitors

19.1.2026
54

Vishay Extends Aluminum Capacitors Rating Up to 600 V for DC Links

15.1.2026
36

Würth Elektronik Introduces Product Navigator for Passive Components

14.1.2026
79

Panasonic Passive Components for Reliable Robotic Arms

14.1.2026
100

Upcoming Events

Jan 27
16:00 - 17:00 CET

Simplifying Vehicle Development with Automotive Ethernet and Zonal Smart Switch Technologies

Feb 24
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

Mar 21
All day

PSMA Capacitor Workshop 2026

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How Metal Prices Are Driving Passive Component Price Hikes

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • Degradation of Capacitors and its Failure Mechanisms

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version