Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Inductor Resonances and its Impact to EMI

    Developing Low Inductance Film Capacitor using Bode 100 Analyzer

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Würth Elektronik Releases High Performance TLVR Coupled Inductors

    YAGEO Extends Rectangular Aluminum Electrolytic Capacitor Family

    Dr. Tomas Zednicek Vision for Europe 2025 Passive Electronics Market

    Littelfuse Releases Industry-First SMD Fuse with 1500A Interrupting Rating at 277V

    TDK Unveils Industry Highest Rated Current Multilayer Chip Beads

    Vishay Releases Automotive SMD Thick Film Power Resistor for Enhanced Protection Against Short Transient Pulses

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Inductor Resonances and its Impact to EMI

    Developing Low Inductance Film Capacitor using Bode 100 Analyzer

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Würth Elektronik Releases High Performance TLVR Coupled Inductors

    YAGEO Extends Rectangular Aluminum Electrolytic Capacitor Family

    Dr. Tomas Zednicek Vision for Europe 2025 Passive Electronics Market

    Littelfuse Releases Industry-First SMD Fuse with 1500A Interrupting Rating at 277V

    TDK Unveils Industry Highest Rated Current Multilayer Chip Beads

    Vishay Releases Automotive SMD Thick Film Power Resistor for Enhanced Protection Against Short Transient Pulses

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Varistor Selection Guideline

29.2.2024
Reading Time: 6 mins read
A A

This article written by Teddy Won, KYOCERA-AVX Corporation explains varistors characteristics, ESD filtering, types and how they compare with TVS diodes and provide brief varistor selection guidelines.

Varistor Characteristics

A varistor is an electronic component used to suppress transient voltages to protect electronic circuits. The behavior of varistors in a circuit is similar to TVS diodes, but they are entirely different in design, materials, and construction.

RelatedPosts

KYOCERA AVX Releases Compact High-Directivity Couplers

Kyocera Introducing SAW Filters for Implantable Medical and AED Applications

The Path to Thinner MLCCs and Innovative Capacitor Development

There are many kinds of varistors on the market suitable for various applications, making choosing the right one to protect a given circuit challenging.

KYOCERA AVX multilayer varistors, with a unique high-energy multilayer construction, provide state-of-the-art overvoltage circuit protection and protection from voltage transients caused by ESD, inductive switching, automotive-related transients, NEMP, lighting, etc.

KYOCERA AVX multilayer varistors also provide EMI/RFI filtering in the off-state, which can replace the need for additional EMC capacitors in the system.

A varistor is a blend of the words “varying resistor” because its resistance varies as the voltage applied to it changes. At low applied voltages, the varistor’s resistance is high, and as the applied voltage increases, the resistance decreases. They behave similarly to a Zener diode, which conducts little to no current when voltages below the breakdown voltage are applied, but a lot of current at voltages above the breakdown voltage. The difference is that varistors are bi-directional.

Multi-Layer Varistors (MLV) are a newer development in the varistor market, constructed with a multi-layer ceramic process in a surface mount package. Below the breakdown voltage, an MLV conducts little to no current but behaves like an EMC capacitor.

Above the breakdown voltage, an MLV conducts current and behaves like a transient voltage suppressor diode. These characteristics are represented in Figure 1.

In practice, an MLV is used to clamp voltage transients, as shown in Figure 2.

Figure 1: Characteristics of a Multi-Layer Varistor (MLV); source: KYOCERA AVX
Figure 2: How a Varistor Clamps Transients

What is ESD

Electrostatic Discharge (ESD) is a momentary flow of electricity between two oppositely charged objects. In an ESD event, static charge built up on one object is suddenly discharged to another object when they come into contact (external), or a dielectric breaks down (internal). ESD is one type of electrical over-stress (EOS) that is a danger to electronic components and one that MLVs can help protect against.

There are various ESD event models used to describe and test electrical components. They vary by energy, pulse shape, and size. Figure 3 shows the electrical energy signatures of different ESD models, including the IEC61000-4-5 8kV model, the Charged-Device Model (CDM), the Human Body Model (HBM), and the Machine Model (MM). These are compared against the energy characteristics of an electrical surge. Knowing the target signal and energy that must be suppressed is key to designing the proper circuit protection.

Figure 3: Different ESD Models by Energy Characteristics

MLV Varistors over TVS Diodes

There are many options for suppressing transient voltages like ESD, but the most common alternatives to MLVs are transient voltage suppressor (TVS) diodes and metal oxide varistors (MOV). MLVs, however, offer some significant advantages over these alternatives.

Compared to MLVs, TVS diodes are more susceptible to failure at higher temperatures. For the same peak power current (IPP), a physically larger TVS diode would be required at higher temperatures.

Figure 4: Survivability of Varistors vs. TVS Diodes over Temperature
Figure 5: Size Comparison of TVS Diode with MLV Varistors

MLVs can also withstand many more strikes before failure than TVS diodes, shown in Figure 6. In this figure, Transguard is a zinc oxide (ZnO)-based ceramic MLV from KYOCERA AVX, while the SOT23 devices referenced are TVS diodes (unidirectional and bidirectional).

MLV Varistors over MOV Varistors

Metal oxide varistors (MOVs), also known as leaded disc varistors, are very common. These devices have been around for a long time and have protected many circuits, but the newer ceramic multilayer technology offers a distinct advantage.

Unlike MOVs, MLVs do not exhibit degradation against multiple strikes (if operated within electrical limits). Therefore, they can be stressed with several 100-1000 pulses with almost no impact on the electrical characteristics.

Figure 8: Percent Change in MLV Varistor Breakdown Voltage Over Multiple Strikes; source: KYOCERA AVX

MLV Varistor Selection Guide

Selecting the right MLV solution for a circuit involves identifying the ESD energy the circuit may experience and then selecting the part that protects against that energy and that best fits into the circuit design. Figure 9 is a flowchart designed to help determine the right varistor for an application.

Figure 9: Varistor Selection Guideline Flowchart; source: KYOCERA AVX
Figure 10: KYOCERA AVX Varistor Series Selection Guide
Figure 11: KYOCERA AVX Varistor Series Voltage and Energy Matrix

KYOCERA AVX multilayer varistors, with a unique high-energy multilayer construction, provide overvoltage circuit protection and protection from voltage transients caused by ESD. They also offer EMI/RFI filtering in the off-state, replacing the need for additional EMC capacitors in the system.

KYOCERA AVX MLVs are available for applications including inductive switching, automotive-related transients, NEMP, lighting, and more

Related

Source: KYOCERA AVX

Recent Posts

Inductor Resonances and its Impact to EMI

16.5.2025
4

Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

15.5.2025
13

Würth Elektronik Releases High Performance TLVR Coupled Inductors

15.5.2025
14

Causes of Oscillations in Flyback Converters

15.5.2025
8

YAGEO Extends Rectangular Aluminum Electrolytic Capacitor Family

15.5.2025
24

Littelfuse Releases Industry-First SMD Fuse with 1500A Interrupting Rating at 277V

14.5.2025
7

TDK Unveils Industry Highest Rated Current Multilayer Chip Beads

14.5.2025
16

Vishay Releases Automotive SMD Thick Film Power Resistor for Enhanced Protection Against Short Transient Pulses

14.5.2025
8

Exxelia Power Film Capacitors Support Critical Systems Across Various Industries

13.5.2025
23

How to design a 60W Flyback Transformer

12.5.2025
27

Upcoming Events

May 28
16:00 - 17:00 CEST

Power Over Data Line

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Developing Low Inductance Film Capacitor using Bode 100 Analyzer

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is the Difference Between X8G, X8L and X8R Ceramic Capacitor Dielectrics?

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version