Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Molex Acquires Smiths Interconnect

    Murata Integrates Component Models into Cadence EDA Tools

    Wk 42 Electronics Supply Chain Digest

    Stackpole Introduces Automotive Thick Film Wide Termination Chip Resistors

    September 2025 ECIA US Components Sales Sentiment Continues in Optimism

    Bourns Release Automotive 4-Terminal Shunt Resistors

    Bourns Releases High Inductance Common Mode Choke

    Vishay Releases Automotive TO-220 Case 50W Thick Film Power Resistor

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Molex Acquires Smiths Interconnect

    Murata Integrates Component Models into Cadence EDA Tools

    Wk 42 Electronics Supply Chain Digest

    Stackpole Introduces Automotive Thick Film Wide Termination Chip Resistors

    September 2025 ECIA US Components Sales Sentiment Continues in Optimism

    Bourns Release Automotive 4-Terminal Shunt Resistors

    Bourns Releases High Inductance Common Mode Choke

    Vishay Releases Automotive TO-220 Case 50W Thick Film Power Resistor

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Varistor Selection Guideline

29.2.2024
Reading Time: 6 mins read
A A

This article written by Teddy Won, KYOCERA-AVX Corporation explains varistors characteristics, ESD filtering, types and how they compare with TVS diodes and provide brief varistor selection guidelines.

Varistor Characteristics

A varistor is an electronic component used to suppress transient voltages to protect electronic circuits. The behavior of varistors in a circuit is similar to TVS diodes, but they are entirely different in design, materials, and construction.

RelatedPosts

KYOCERA AVX Expands Stacked MLCC Capacitors Offering

KYOCERA Releases Shielded Board-to-Board Connectors for Reliable EMI Protection

Kyocera Launches New SAW Filter for GNSS 1.6GHz Satellite Communications

There are many kinds of varistors on the market suitable for various applications, making choosing the right one to protect a given circuit challenging.

KYOCERA AVX multilayer varistors, with a unique high-energy multilayer construction, provide state-of-the-art overvoltage circuit protection and protection from voltage transients caused by ESD, inductive switching, automotive-related transients, NEMP, lighting, etc.

KYOCERA AVX multilayer varistors also provide EMI/RFI filtering in the off-state, which can replace the need for additional EMC capacitors in the system.

A varistor is a blend of the words “varying resistor” because its resistance varies as the voltage applied to it changes. At low applied voltages, the varistor’s resistance is high, and as the applied voltage increases, the resistance decreases. They behave similarly to a Zener diode, which conducts little to no current when voltages below the breakdown voltage are applied, but a lot of current at voltages above the breakdown voltage. The difference is that varistors are bi-directional.

Multi-Layer Varistors (MLV) are a newer development in the varistor market, constructed with a multi-layer ceramic process in a surface mount package. Below the breakdown voltage, an MLV conducts little to no current but behaves like an EMC capacitor.

Above the breakdown voltage, an MLV conducts current and behaves like a transient voltage suppressor diode. These characteristics are represented in Figure 1.

In practice, an MLV is used to clamp voltage transients, as shown in Figure 2.

Figure 1: Characteristics of a Multi-Layer Varistor (MLV); source: KYOCERA AVX
Figure 2: How a Varistor Clamps Transients

What is ESD

Electrostatic Discharge (ESD) is a momentary flow of electricity between two oppositely charged objects. In an ESD event, static charge built up on one object is suddenly discharged to another object when they come into contact (external), or a dielectric breaks down (internal). ESD is one type of electrical over-stress (EOS) that is a danger to electronic components and one that MLVs can help protect against.

There are various ESD event models used to describe and test electrical components. They vary by energy, pulse shape, and size. Figure 3 shows the electrical energy signatures of different ESD models, including the IEC61000-4-5 8kV model, the Charged-Device Model (CDM), the Human Body Model (HBM), and the Machine Model (MM). These are compared against the energy characteristics of an electrical surge. Knowing the target signal and energy that must be suppressed is key to designing the proper circuit protection.

Figure 3: Different ESD Models by Energy Characteristics

MLV Varistors over TVS Diodes

There are many options for suppressing transient voltages like ESD, but the most common alternatives to MLVs are transient voltage suppressor (TVS) diodes and metal oxide varistors (MOV). MLVs, however, offer some significant advantages over these alternatives.

Compared to MLVs, TVS diodes are more susceptible to failure at higher temperatures. For the same peak power current (IPP), a physically larger TVS diode would be required at higher temperatures.

Figure 4: Survivability of Varistors vs. TVS Diodes over Temperature
Figure 5: Size Comparison of TVS Diode with MLV Varistors

MLVs can also withstand many more strikes before failure than TVS diodes, shown in Figure 6. In this figure, Transguard is a zinc oxide (ZnO)-based ceramic MLV from KYOCERA AVX, while the SOT23 devices referenced are TVS diodes (unidirectional and bidirectional).

MLV Varistors over MOV Varistors

Metal oxide varistors (MOVs), also known as leaded disc varistors, are very common. These devices have been around for a long time and have protected many circuits, but the newer ceramic multilayer technology offers a distinct advantage.

Unlike MOVs, MLVs do not exhibit degradation against multiple strikes (if operated within electrical limits). Therefore, they can be stressed with several 100-1000 pulses with almost no impact on the electrical characteristics.

Figure 8: Percent Change in MLV Varistor Breakdown Voltage Over Multiple Strikes; source: KYOCERA AVX

MLV Varistor Selection Guide

Selecting the right MLV solution for a circuit involves identifying the ESD energy the circuit may experience and then selecting the part that protects against that energy and that best fits into the circuit design. Figure 9 is a flowchart designed to help determine the right varistor for an application.

Figure 9: Varistor Selection Guideline Flowchart; source: KYOCERA AVX
Figure 10: KYOCERA AVX Varistor Series Selection Guide
Figure 11: KYOCERA AVX Varistor Series Voltage and Energy Matrix

KYOCERA AVX multilayer varistors, with a unique high-energy multilayer construction, provide overvoltage circuit protection and protection from voltage transients caused by ESD. They also offer EMI/RFI filtering in the off-state, replacing the need for additional EMC capacitors in the system.

KYOCERA AVX MLVs are available for applications including inductive switching, automotive-related transients, NEMP, lighting, and more

Related

Source: KYOCERA AVX

Recent Posts

Murata Integrates Component Models into Cadence EDA Tools

21.10.2025
9

Stackpole Introduces Automotive Thick Film Wide Termination Chip Resistors

20.10.2025
4

Bourns Release Automotive 4-Terminal Shunt Resistors

17.10.2025
16

Bourns Releases High Inductance Common Mode Choke

16.10.2025
16

Vishay Releases Automotive TO-220 Case 50W Thick Film Power Resistor

16.10.2025
12

High Energy Density Polymer Film Capacitors via Molecular and Interfacial Design

15.10.2025
25

Bourns Releases High Clearance and Creepage 1500VDC Power Transformer

15.10.2025
22

KYOCERA AVX Expands Stacked MLCC Capacitors Offering

14.10.2025
38

YAGEO Unveils Compact 3.6kW LLC Transformer for OBC EV Charging

13.10.2025
134

Over-Voltage Protection Clippers, Clampers, Snubbers, DC Restorers

13.10.2025
29

Upcoming Events

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Oct 28
8:00 - 15:00 CET

Power Up Your Design: SN6507 and the Ready-to-Use Development Kit

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version