• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

Varistor Selection Guideline

18.8.2023

Snubber Capacitors in Power Electronics

27.9.2023

TAIYO YUDEN Expands Lineup of Multilayer Metal Power Inductors

26.9.2023

Bourns Releases New High Energy Gas Discharge Tubes

26.9.2023

Würth Elektronik Extends its Application and Industry Guide for Easy Navigation to Suitable Circuits and Components

26.9.2023

Designing a Small Integrated 500W LLC Transformer

26.9.2023

KYOCERA AVX Earned a Platinum 2022 TTI Asia Supplier Excellence Award

26.9.2023
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Snubber Capacitors in Power Electronics

    TAIYO YUDEN Expands Lineup of Multilayer Metal Power Inductors

    Bourns Releases New High Energy Gas Discharge Tubes

    Würth Elektronik Extends its Application and Industry Guide for Easy Navigation to Suitable Circuits and Components

    Designing a Small Integrated 500W LLC Transformer

    KYOCERA AVX Earned a Platinum 2022 TTI Asia Supplier Excellence Award

    Murata Completes New MLCC Factory in Thailand to Satisfy Smartphone and EV Market Needs

    Charging/Discharging of Linear andNon-linear Capacitors

    How to Select Inductor For Switching Power Supply

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Charging/Discharging of Linear andNon-linear Capacitors

    How to Select Inductor For Switching Power Supply

    Oscillators Integration, Selection Guide and Design In

    Input Capacitor Selection for Power Supplies – Part 3: Electrolytic Capacitors

    Input Capacitor Selection for Power Supplies Part 2 – Ceramic Capacitors

    Input Capacitor Selection for Power Supplies Video (Part 1)

    Vishay Webinar: Components Selection for Solar Panel Systems

    Capacitors Basics: Decoupling

    Totem Pole PFC Design for E-Mobility; Microchip and WE Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Snubber Capacitors in Power Electronics

    TAIYO YUDEN Expands Lineup of Multilayer Metal Power Inductors

    Bourns Releases New High Energy Gas Discharge Tubes

    Würth Elektronik Extends its Application and Industry Guide for Easy Navigation to Suitable Circuits and Components

    Designing a Small Integrated 500W LLC Transformer

    KYOCERA AVX Earned a Platinum 2022 TTI Asia Supplier Excellence Award

    Murata Completes New MLCC Factory in Thailand to Satisfy Smartphone and EV Market Needs

    Charging/Discharging of Linear andNon-linear Capacitors

    How to Select Inductor For Switching Power Supply

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Charging/Discharging of Linear andNon-linear Capacitors

    How to Select Inductor For Switching Power Supply

    Oscillators Integration, Selection Guide and Design In

    Input Capacitor Selection for Power Supplies – Part 3: Electrolytic Capacitors

    Input Capacitor Selection for Power Supplies Part 2 – Ceramic Capacitors

    Input Capacitor Selection for Power Supplies Video (Part 1)

    Vishay Webinar: Components Selection for Solar Panel Systems

    Capacitors Basics: Decoupling

    Totem Pole PFC Design for E-Mobility; Microchip and WE Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Varistor Selection Guideline

18.8.2023
Reading Time: 6 mins read
A A
96
VIEWS

This article written by Teddy Won, KYOCERA-AVX Corporation explains varistors characteristics, ESD filtering, types and how they compare with TVS diodes and provide brief varistor selection guidelines.

Varistor Characteristics

A varistor is an electronic component used to suppress transient voltages to protect electronic circuits. The behavior of varistors in a circuit is similar to TVS diodes, but they are entirely different in design, materials, and construction.

RelatedPosts

KYOCERA AVX Earned a Platinum 2022 TTI Asia Supplier Excellence Award

SuperCapacitors Benefits in Power Backup Applications

Tantalum and NbO Capacitors Failure Mode Comparison

There are many kinds of varistors on the market suitable for various applications, making choosing the right one to protect a given circuit challenging.

KYOCERA AVX multilayer varistors, with a unique high-energy multilayer construction, provide state-of-the-art overvoltage circuit protection and protection from voltage transients caused by ESD, inductive switching, automotive-related transients, NEMP, lighting, etc.

KYOCERA AVX multilayer varistors also provide EMI/RFI filtering in the off-state, which can replace the need for additional EMC capacitors in the system.

A varistor is a blend of the words “varying resistor” because its resistance varies as the voltage applied to it changes. At low applied voltages, the varistor’s resistance is high, and as the applied voltage increases, the resistance decreases. They behave similarly to a Zener diode, which conducts little to no current when voltages below the breakdown voltage are applied, but a lot of current at voltages above the breakdown voltage. The difference is that varistors are bi-directional.

Multi-Layer Varistors (MLV) are a newer development in the varistor market, constructed with a multi-layer ceramic process in a surface mount package. Below the breakdown voltage, an MLV conducts little to no current but behaves like an EMC capacitor.

Above the breakdown voltage, an MLV conducts current and behaves like a transient voltage suppressor diode. These characteristics are represented in Figure 1.

In practice, an MLV is used to clamp voltage transients, as shown in Figure 2.

Figure 1: Characteristics of a Multi-Layer Varistor (MLV); source: KYOCERA AVX
Figure 2: How a Varistor Clamps Transients

What is ESD

Electrostatic Discharge (ESD) is a momentary flow of electricity between two oppositely charged objects. In an ESD event, static charge built up on one object is suddenly discharged to another object when they come into contact (external), or a dielectric breaks down (internal). ESD is one type of electrical over-stress (EOS) that is a danger to electronic components and one that MLVs can help protect against.

There are various ESD event models used to describe and test electrical components. They vary by energy, pulse shape, and size. Figure 3 shows the electrical energy signatures of different ESD models, including the IEC61000-4-5 8kV model, the Charged-Device Model (CDM), the Human Body Model (HBM), and the Machine Model (MM). These are compared against the energy characteristics of an electrical surge. Knowing the target signal and energy that must be suppressed is key to designing the proper circuit protection.

Figure 3: Different ESD Models by Energy Characteristics

MLV Varistors over TVS Diodes

There are many options for suppressing transient voltages like ESD, but the most common alternatives to MLVs are transient voltage suppressor (TVS) diodes and metal oxide varistors (MOV). MLVs, however, offer some significant advantages over these alternatives.

Compared to MLVs, TVS diodes are more susceptible to failure at higher temperatures. For the same peak power current (IPP), a physically larger TVS diode would be required at higher temperatures.

Figure 4: Survivability of Varistors vs. TVS Diodes over Temperature
Figure 5: Size Comparison of TVS Diode with MLV Varistors

MLVs can also withstand many more strikes before failure than TVS diodes, shown in Figure 6. In this figure, Transguard is a zinc oxide (ZnO)-based ceramic MLV from KYOCERA AVX, while the SOT23 devices referenced are TVS diodes (unidirectional and bidirectional).

MLV Varistors over MOV Varistors

Metal oxide varistors (MOVs), also known as leaded disc varistors, are very common. These devices have been around for a long time and have protected many circuits, but the newer ceramic multilayer technology offers a distinct advantage.

Unlike MOVs, MLVs do not exhibit degradation against multiple strikes (if operated within electrical limits). Therefore, they can be stressed with several 100-1000 pulses with almost no impact on the electrical characteristics.

Figure 8: Percent Change in MLV Varistor Breakdown Voltage Over Multiple Strikes; source: KYOCERA AVX

MLV Varistor Selection Guide

Selecting the right MLV solution for a circuit involves identifying the ESD energy the circuit may experience and then selecting the part that protects against that energy and that best fits into the circuit design. Figure 9 is a flowchart designed to help determine the right varistor for an application.

Figure 9: Varistor Selection Guideline Flowchart; source: KYOCERA AVX
Figure 10: KYOCERA AVX Varistor Series Selection Guide
Figure 11: KYOCERA AVX Varistor Series Voltage and Energy Matrix

KYOCERA AVX multilayer varistors, with a unique high-energy multilayer construction, provide overvoltage circuit protection and protection from voltage transients caused by ESD. They also offer EMI/RFI filtering in the off-state, replacing the need for additional EMC capacitors in the system.

KYOCERA AVX MLVs are available for applications including inductive switching, automotive-related transients, NEMP, lighting, and more

Source: KYOCERA AVX

Related Posts

Capacitors

Snubber Capacitors in Power Electronics

27.9.2023
27
Capacitors

Würth Elektronik Extends its Application and Industry Guide for Easy Navigation to Suitable Circuits and Components

26.9.2023
14
Inductors

Designing a Small Integrated 500W LLC Transformer

26.9.2023
9

Upcoming Events

Sep 26
September 26 @ 12:00 - September 28 @ 14:00 EDT

Microwave Packaging Technology

Oct 3
October 3 @ 12:00 - October 5 @ 14:00 EDT

Design and Test of Non-Hermetic Microelectronic

Oct 11
11:00 - 12:00 CEST

Stretchable Electronics

View Calendar

Popular Posts

  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • Leakage Current Characteristics of Capacitors

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0
  • YAGEO’s Role in Powering the AI Revolution

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Archive

2023
2022
2021
2020
2019
2018
2017

Symposium

Passive Components Networking Symposium

Passives e-Learning

Knowledge Blog

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.