Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    Littelfuse Releases TMR Switches with Ultra-Low Power Magnetic Sensing

    Skeleton Opens SuperBattery Factory in Finland 

    Kyocera Releases Ultra-Compact Low Voltage Clock Oscillators

    Murata Expands High Rel NTC Thermistors in Compact 0603M Size

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Wk 45 Electronics Supply Chain Digest

    Transformer Safety IEC 61558 Standard

    ESR of Capacitors, Measurements and Applications

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    Littelfuse Releases TMR Switches with Ultra-Low Power Magnetic Sensing

    Skeleton Opens SuperBattery Factory in Finland 

    Kyocera Releases Ultra-Compact Low Voltage Clock Oscillators

    Murata Expands High Rel NTC Thermistors in Compact 0603M Size

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Wk 45 Electronics Supply Chain Digest

    Transformer Safety IEC 61558 Standard

    ESR of Capacitors, Measurements and Applications

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Varistors for Automotive Ethernet; AVX Technical Paper

28.1.2022
Reading Time: 6 mins read
A A

When it comes to protecting electrical equipment from high voltage transients, metal oxide varistors (MOVs) are one of the most popular choices. Automotive single-pair ethernet accomplishes high data transfer demand while still adhering to robust EMI and EMC requirements. This paper written by Akihiro Kado and Michael Kirk from AVX Corporation discuss capabilities if varistors and its suitability for automotive ethernet applications.

Introduction

The ubiquity of high-performance sensor systems in modern automobiles (particularly electric and self-driving vehicles) has created immense pressure to develop automotive local area networking (LAN) solutions that offer high bandwidth, low latency, and low cost. Traditional wiring harnesses have become too heavy and complex to support these data and power needs.

RelatedPosts

Choosing the Right Capacitor: The Importance of Accurate Measurements

Littelfuse Releases TMR Switches with Ultra-Low Power Magnetic Sensing

Skeleton Opens SuperBattery Factory in Finland 

To date, wired ethernet has taken center stage in this quest, with manufacturers offering physical layer (PHY) devices for single twisted pair data transmission that complies with the latest IEEE 802.3 standards. In particular, considering the data demands of backup video cameras, self-driving cameras, and LIDAR/RADAR object detection systems, the 802.3cg standard has become commonplace, offering 10 Mbps over a 25 m distance using a single twisted pair. In addition to data transfer, the same twisted pair is capable of providing power to sensor subsystems using power over ethernet (PoE) techniques. Most importantly, automotive single-pair ethernet accomplishes this while still adhering to robust EMI and EMC requirements.

The Importance of Varistors

When it comes to protecting electrical equipment from high voltage transients, metal oxide varistors (MOVs) are one of the most popular choices. These devices exhibit a reduction in resistance at high voltages, effectively absorbing the voltage spike and dissipating the energy as heat. Typical varistors are specified by their maximum voltage, the energy they can dissipate, their capacitance, and their response time. When protecting integrated circuits on high-speed data lines, such as an automotive ethernet PHY, capacitance becomes the most critical parameter because it can directly affect the data waveform. Unfortunately, low capacitance generally implies small physical size, and in turn, low voltage and energy ratings. Achieving adequate ESD and EMI protection in a small form factor is a primary challenge for manufacturers today.

AVX Varistors

AVX began shipping a selection of multi-layer varistors (MLV) in 1988 and entered the automotive supply chain in 2001. AVX has adopted bismuth oxide (Bi2O3)-based construction for its high reliability and has resulted in zero defective parts per million quality record since 2008. In addition, these devices meet the strict automotive quality standards (AEC-Q200, for example) and as such, are an ideal choice for protecting automotive Ethernet circuits.

Figure 1: AVX Varistor History and Specifications

Depending on the specific requirements for size, capacitance, and energy protection, there are several different series of MLV devices to choose from. Three popular AVX lines are shown in figure 2.

Figure 2: AVX lines of multi-layer varistors

AVX also offers a specific lineup of MLV’s called “Antenna PowerGuard”, which provide ultra-low capacitance and tight tolerance for use in RF circuits, sensors, and high-speed data lines. This is achieved through their cascade structure (shown in figure 3), which maintains ESD resistance while reducing total overall capacitance. These devices are an ideal choice for protecting single-pair ethernet data lines in automotive applications.

Figure 3: AVX multi-layer varistors offer a cascade structure, which maintains ESD resistance while reducing total overall capacitance

A Competitive Comparison

To demonstrate the Advantage of Antenna PowerGuard varistors in automotive ethernet applications, an AVX device (VCAS04AP181R5KATWA) was tested next to a competitive product with similar electrical specifications. The I-V curve for the two devices is shown in figure 4, where it can be seen that the AVX device offers superior clamping voltage across the entire range tested. Similarly, in transient tests of 100 ns voltage pulses with 200 ps rise times, the AVX device consistently outperforms the competition with a lower clamping voltage.

Figure 4: The following I-V curve shows that the AVX device offers superior clamping voltage
Figure 5: The following I-V curve shows that the AVX varistor outperforms the competition with a lower clamping voltage

Transient energy testing with the 10X1000us pulse shows the ability of the AVX OPEN alliance varistor to suppress a high energy pulse. The AVX design provides higher protection to the circuit than the competitive varistor device.

Figure 6 shows the AVX varistor’s ability to suppress a transient with a higher applied current, 0.15A for AVX and 0.1A for the competitor without failing. Figure 7 shows the lower clamping voltage with higher transient energy suppressed between the AVX and competitor parts. The AVX device provides improved protection as it is capable to withstand higher energies while better suppressing the transient pulse in the circuit.

Figure 6: AVX varistor’s ability to suppress a transient with a higher applied current
Figure 7: AVX devices provide higher energy capability with lower clamping voltage for better transient suppression and circuit protection

PowerGuard Varistor Solutions

Automotive Ethernet has evolved into a very high-performance system that is tightly constrained, not only by the traditional goals of low cost and high reliability, but also by the regulatory standards for environmental resilience including ESD and EMI. Achieving these goals requires a broad range of techniques and supporting components, including varistors.

AVX offers a wide variety of varistors to support these designs and OPEN Alliance 1000BASE-T1 applications. In particular, AVX’s Antenna PowerGuard varistors are perfectly suited to protected automotive ethernet circuits, and as shown through a variety of tests, outperform the competition in every category.

Related

Source: AVX Corporation

Recent Posts

Kyocera Releases Ultra-Compact Low Voltage Clock Oscillators

12.11.2025
4

Murata Expands High Rel NTC Thermistors in Compact 0603M Size

12.11.2025
4

KYOCERA AVX Releases Antenna for Iridium Satellite IoT Applications

6.11.2025
14

Capacitor Lead Times: October 2025

6.11.2025
82

Coilcraft Introduces Ultra-Low Loss Shielded Power Inductors

6.11.2025
23

Würth Elektronik Expands its MagI³C-VDMM MicroModules

5.11.2025
15

Murata Expands High Cutoff Frequency Chip Common Mode Chokes

5.11.2025
13

Murata Expands Automotive Metal Frame Y2/X1 Safety MLCC Capacitors to 500V

30.10.2025
47

Samsung Releases Automotive Molded 2220 1kV C0G MLCC

23.10.2025
70

Upcoming Events

Nov 12
November 12 @ 12:00 - November 13 @ 14:15 EST

Microelectronic Packaging Failure Modes and Analysis

Nov 13
11:00 - 11:30 CET

DC/DC Converters in Automotive Applications

Dec 2
December 2 @ 12:00 - December 4 @ 14:15 CET

Microwave Packaging Technology

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version