• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

Vishay Releases High Current, High Temperature Edge-Wound Inductors

25.7.2022

Transformer Design for EMC; WE Webinar

22.7.2022

Jianghai Launches Four New Stacked Polymer Capacitor Series

21.7.2022

High Voltage MLCC for EV Powertrain

21.7.2022

Capacitors Pre-charging in Drive Circuits Using Pulse-Withstanding Resistors

21.7.2022

Filter Q Factor Explained

21.7.2022

Würth Elektronik Introduces Snap-In Supercapacitors

20.7.2022

Skeleton to Build the World’s Largest Supercapacitor Factory

20.7.2022

Murata Introduces Low DCR Power Over Coax Metal Alloy Chip Inductor

18.7.2022
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Transformer Design for EMC; WE Webinar

    Jianghai Launches Four New Stacked Polymer Capacitor Series

    High Voltage MLCC for EV Powertrain

    Capacitors Pre-charging in Drive Circuits Using Pulse-Withstanding Resistors

    Filter Q Factor Explained

    Würth Elektronik Introduces Snap-In Supercapacitors

    Skeleton to Build the World’s Largest Supercapacitor Factory

    Vishay Releases High Current, High Temperature Edge-Wound Inductors

    Murata Introduces Low DCR Power Over Coax Metal Alloy Chip Inductor

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Transformer Design for EMC; WE Webinar

    Film Capacitor Failures Deep Dive Case Study

    Analogue Temperature Controller and Thermistor LTSpice Simulation Video

    Calculating the Inductance of a DC Biased Inductor

    Diode RC Snubber Explained

    Basics of PCB production, Part 1; WE Webinar

    Effects of Harsh Environmental Conditions on Film Capacitors

    Common-mode Choke Parameters Explained; WE Webinar

    Ceramic Capacitors Loss Modelling under High DC Bias Voltage and High Current Stress

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Transformer Design for EMC; WE Webinar

    Jianghai Launches Four New Stacked Polymer Capacitor Series

    High Voltage MLCC for EV Powertrain

    Capacitors Pre-charging in Drive Circuits Using Pulse-Withstanding Resistors

    Filter Q Factor Explained

    Würth Elektronik Introduces Snap-In Supercapacitors

    Skeleton to Build the World’s Largest Supercapacitor Factory

    Vishay Releases High Current, High Temperature Edge-Wound Inductors

    Murata Introduces Low DCR Power Over Coax Metal Alloy Chip Inductor

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Transformer Design for EMC; WE Webinar

    Film Capacitor Failures Deep Dive Case Study

    Analogue Temperature Controller and Thermistor LTSpice Simulation Video

    Calculating the Inductance of a DC Biased Inductor

    Diode RC Snubber Explained

    Basics of PCB production, Part 1; WE Webinar

    Effects of Harsh Environmental Conditions on Film Capacitors

    Common-mode Choke Parameters Explained; WE Webinar

    Ceramic Capacitors Loss Modelling under High DC Bias Voltage and High Current Stress

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Vishay Releases High Current, High Temperature Edge-Wound Inductors

25.7.2022
Reading Time: 3 mins read
0 0
0
SHARES
37
VIEWS

Vishay Intertechnology releases high current, THT through-hole edge-wound inductor IHDM series capable of continuous operation up to 180°C.

The edge-wound technology brings high-current capability and inductance stability at high temperature range for applications current up to 128A DC.

RelatedPosts

Analogue Temperature Controller and Thermistor LTSpice Simulation Video

Vishay Introduced Leadless NTC Thermistor Dies with Versatile Mounting Options

Vishay Introduced Low Profile Humidity Robust Automotive DC Link Film Capacitors

Featuring a powdered iron alloy core technology, Vishay IHDM edge-wound, through-hole inductors provide soft saturation up to 456 A over a demanding operating temperature range from -40 °C to +180 °C.

Vishay Intertechnology, Inc. introduced two new IHDM edge-wound, through-hole inductors in the 1107 case for commercial applications with soft saturation current to 422 A. Featuring a powdered iron alloy core technology, the Vishay Custom Magnetics IHDM-1107BBEV-20 and IHDM-1107BBEV-30 provide stable inductance and saturation over a demanding operating temperature range from -55 °C to +180 °C with low power losses and excellent heat dissipation.

The edge-wound coil provides low DCR down to 0.25 mΩ, which minimizes losses and improves rated current performance for increased efficiency. Compared to competing ferrite-based solutions, the IHDM-1107BBEV-20 and IHDM-1107BBEV-30 offer 30 % higher rated current and 30 % higher soft saturation current levels that are stable at continuous operating temperatures to +180 °C. The inductors’ soft saturation provides a predictable inductance decrease with increasing current, independent of temperature.

With an operating voltage up to 350 V, the devices are ideal for DC/DC converters, inverters, differential mode chokes, and filters for motor and switching noise suppression in high current, high temperature applications, including industrial, medical, and military systems. The inductors are available with a selection of two core materials for optimized performance depending on the application. Standard terminals for the IHDM-1107BBEV-20 and IHDM-1107BBEV-30 are stripped and tinned for through-hole mounting. Vishay can customize the devices’ performance — including inductance, DCR, rated current, and voltage rating — upon request. Customizable mounting options include bare copper, surface-mount, and press fit. To reduce the risk of whisker growth, the inductors feature a hot-dipped tin plating. The devices are RoHS-compliant, halogen-free, and Vishay Green.

Features

  • High temperature operation, up to 180 °C continuous with no aging
  • Low DCR to minimize losses and reduce temperature rise
  • Powdered iron alloy core technology provides stable inductance and saturation over operating temperature with satisfactory core losses
  • Soft saturation gives predictable inductance decrease with increasing DC current independent of temperature
  • Series includes multiple powdered iron core materials for optimized performance in circuit application
  • Standard terminal is stripped and tinned for through-hole mounting but other terminal configurations such as bare copper, SMD, and press fit pin are available upon request
  • Hot dipped Sn plating provides low risk of whisker growth
  • Custom options for inductance, current rating, DCR, mounting style and voltage rating are available

Applications

  • High current and high temperature applications
  • DC/DC converters
  • High current differential mode chokes
  • Inverters
Edge-wound IHDM inductor specification table
Source: Vishay

Related Posts

Applications e-Blog

Transformer Design for EMC; WE Webinar

22.7.2022
32
Capacitors

Würth Elektronik Introduces Snap-In Supercapacitors

20.7.2022
44
Automotive

TAIYO YUDEN Releases Industry-Leading Low DC Resistance Automotive Power Inductors

8.7.2022
42

Popular Posts

  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • Leakage Current Characteristics of Capacitors

    0 shares
    Share 0 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • Dielectric Constant and its Effects on the Properties of a Capacitor

    7 shares
    Share 7 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0

Newsletter Subscription

 

Archive

2022
2021
2020
2019
2018
2017

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.