• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

Waveguides and Transmission Lines Explained

23.6.2022

Bourns Releases Semi-shielded Power Inductors

28.6.2022

KYOCERA AVX Launches New Interactive Component Search Tool

27.6.2022

YAGEO Presents Reverse Geometry MLCC with Reduced ESL

27.6.2022

Effects of Harsh Environmental Conditions on Film Capacitors

24.6.2022
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Bourns Releases Semi-shielded Power Inductors

    KYOCERA AVX Launches New Interactive Component Search Tool

    YAGEO Presents Reverse Geometry MLCC with Reduced ESL

    Effects of Harsh Environmental Conditions on Film Capacitors

    Waveguides and Transmission Lines Explained

    Electron microscope images show the precise atom-by-atom structure of a barium titanate (BaTiO3) thin film sandwiched between layers of strontium ruthenate (SrRuO3) metal to make a tiny capacitor. (Credit: Lane Martin/Berkeley Lab)

    Researchers Developed BaTiO3 Ultrathin Ceramic Capacitors for Microchips

    Common-mode Choke Parameters Explained; WE Webinar

    Bourns Releases Power Line Communication (PLC) Transformers

    Murata to Begin Closed-loop Recycling of PET Film Used at MLCC Production

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Effects of Harsh Environmental Conditions on Film Capacitors

    Common-mode Choke Parameters Explained; WE Webinar

    Ceramic Capacitors Loss Modelling under High DC Bias Voltage and High Current Stress

    MLCC Case Size Impact to Parameters

    NTC Thermistor in Fire Alarm Application LTSpice Simulation

    MLCC Ageing; Samsung Video

    Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

    Coverlay – More than a Flexible Soldermask Substitute; WE Webinar

    Soldering THT Components by SMD Reflow Assembly; WE Webinar

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Bourns Releases Semi-shielded Power Inductors

    KYOCERA AVX Launches New Interactive Component Search Tool

    YAGEO Presents Reverse Geometry MLCC with Reduced ESL

    Effects of Harsh Environmental Conditions on Film Capacitors

    Waveguides and Transmission Lines Explained

    Electron microscope images show the precise atom-by-atom structure of a barium titanate (BaTiO3) thin film sandwiched between layers of strontium ruthenate (SrRuO3) metal to make a tiny capacitor. (Credit: Lane Martin/Berkeley Lab)

    Researchers Developed BaTiO3 Ultrathin Ceramic Capacitors for Microchips

    Common-mode Choke Parameters Explained; WE Webinar

    Bourns Releases Power Line Communication (PLC) Transformers

    Murata to Begin Closed-loop Recycling of PET Film Used at MLCC Production

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Effects of Harsh Environmental Conditions on Film Capacitors

    Common-mode Choke Parameters Explained; WE Webinar

    Ceramic Capacitors Loss Modelling under High DC Bias Voltage and High Current Stress

    MLCC Case Size Impact to Parameters

    NTC Thermistor in Fire Alarm Application LTSpice Simulation

    MLCC Ageing; Samsung Video

    Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

    Coverlay – More than a Flexible Soldermask Substitute; WE Webinar

    Soldering THT Components by SMD Reflow Assembly; WE Webinar

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Waveguides and Transmission Lines Explained

23.6.2022
Reading Time: 4 mins read
0 0
0
SHARES
44
VIEWS

This blog article from Knowles Precision Devices explains background information on how waveguides and transmission line filters do what they do.

Two important methods for propagating electromagnetic waves around a circuit are waveguides and transmission lines. At a high level, the main difference between these two methods is the number of conductors involved and the types of electromagnetic modes supported. Let’s explore how these types of electromagnetic modes work and how they are supported, or not supported, by waveguides and transmission lines.

RelatedPosts

Snubber Capacitor Selection for SiC-Based Switching Converters

High Voltage MLCC Dual-Use Legislation Considerations

Five Key Filter Specifications

Three Types of Electromagnetic Modes

When we say “modes”, what we are referencing is the different solutions to the electromagnetic field equations for the particular structure we are referring to. These three modes include transverse magnetic (TM), transverse electric (TE), and transverse electro-magnetic (TEM).

A TM mode solution involves the electric (E) field having components in the z-direction, which is along the direction of propagation, so that the magnetic (H) field is transverse, or at right angles to the z-direction (Figure 1).

On the other hand, TE mode has E field components at right angles to the z-direction as shown in Figure 2.

Figure 1. The E and H fields for TM mode moving in a rectangular waveguide.
Figure 2. The E and H fields for TE mode moving in a rectangular waveguide.

TEM mode has E field and H field components at right angles to the Z direction. Figure 3a shows an example of an electromagnetic wave propagating through space in TEM mode while Figure 3b shows how TEM mode works in a cross-section of a coax cable.

Figure 3a. Example of an electromagnetic wave propagating through space in TEM mode
Figure 3b. TEM mode in a cross-section of a coax cable

The Different Modes Supported by Transmission Lines and Waveguides

When we look at transmission lines and waveguides in terms of the electromagnetic modes supported, we can make clear distinctions between the two. A waveguide is a hollow tube made of a single conducting surface, which means it cannot support TEM mode.

Figure 4. A representation of substrate-integrated waveguide SIW.

We usually see waveguides designed as a metal tube, but in recent years, the development of substrate-integrated waveguide (SIW) technology is changing this. An SIW is basically a rectangular waveguide in which the single conductor walls are formed by plated surfaces and vias. In this format, the wave uses TE mode to propagate in high dielectric-constant materials. A depiction of an SIW is shown in Figure 4.

Since a transmission line is a two-conductor structure, it can carry electromagnetic waves using TEM mode. A common example of a transmission line, although it is sort of going out of style now, is the coax cable shown in Figure 3b, which carries DOCSIS signals to cable TV boxes. Additional transmission line examples, the modes one would usually see, and their traditional performance characteristics compared to what you would see with a waveguide are all outlined in Table 1.

Table 1. With all other qualities of the application being equal, this Table provides an overview of how waveguides and different transmission line methods compare; source: Knowles Precision Devices

To summarize, the biggest thing to remember when it comes to waveguides versus transmission lines is that a waveguide = one conductor (usually a tube) and a transmission line = more than one conductor, such as the structure seen in a coax cable.

Source: Knowles Precision Devices

Related Posts

Capacitors

KYOCERA AVX Launches New Interactive Component Search Tool

27.6.2022
21
Capacitor videos

Effects of Harsh Environmental Conditions on Film Capacitors

24.6.2022
19
Electron microscope images show the precise atom-by-atom structure of a barium titanate (BaTiO3) thin film sandwiched between layers of strontium ruthenate (SrRuO3) metal to make a tiny capacitor. (Credit: Lane Martin/Berkeley Lab)
Capacitors

Researchers Developed BaTiO3 Ultrathin Ceramic Capacitors for Microchips

23.6.2022
66

Popular Posts

  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Introduction to Capacitor Based Power Factor Correction Circuits

    0 shares
    Share 0 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0

Newsletter Subscription

 

Archive

2022
2021
2020
2019
2018
2017

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.