• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

What is X2Y Bypass Capacitor and What is it Good For?

27.1.2023

Practical LLC Transformer Design Methodology

31.3.2023

Practical Measurement of Crystal Circuits

31.3.2023

March 2023 ECIA NA Electronic Components Sales Misses Expectations

31.3.2023

4th PCNS Call for Abstracts Extended !

30.3.2023

Würth Elektronik Presents New Series of DC-Link Film Capacitors

30.3.2023

Vishay Increases Anti-Surge Thick Film 0805 Power Resistor Performance with 0.5 W Power Rating

29.3.2023
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Practical LLC Transformer Design Methodology

    Practical Measurement of Crystal Circuits

    March 2023 ECIA NA Electronic Components Sales Misses Expectations

    4th PCNS Call for Abstracts Extended !

    Würth Elektronik Presents New Series of DC-Link Film Capacitors

    Vishay Increases Anti-Surge Thick Film 0805 Power Resistor Performance with 0.5 W Power Rating

    Q&A Update on Aluminum Capacitor Technology with Industry Highest Energy Density >5J/cc Available for Acquisition

    Designing with High Voltage Resistors: 10 Top Tips for Success

    API Delevan Introduces 0402 and 0603 Small High Reliability Space SMD Inductors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Practical LLC Transformer Design Methodology

    Practical Measurement of Crystal Circuits

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    Understanding Basics of Current Sense Resistors

    What Decoupling Capacitor Value To Use And Where To Place Them

    How to Measure Rated Current on Power Inductors

    LTspice Simulation of a Spark-Gap Circuit Protection Surge Arrester

    Approximate Inductor Design Using Two Alternative Cores

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Practical LLC Transformer Design Methodology

    Practical Measurement of Crystal Circuits

    March 2023 ECIA NA Electronic Components Sales Misses Expectations

    4th PCNS Call for Abstracts Extended !

    Würth Elektronik Presents New Series of DC-Link Film Capacitors

    Vishay Increases Anti-Surge Thick Film 0805 Power Resistor Performance with 0.5 W Power Rating

    Q&A Update on Aluminum Capacitor Technology with Industry Highest Energy Density >5J/cc Available for Acquisition

    Designing with High Voltage Resistors: 10 Top Tips for Success

    API Delevan Introduces 0402 and 0603 Small High Reliability Space SMD Inductors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Practical LLC Transformer Design Methodology

    Practical Measurement of Crystal Circuits

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    Understanding Basics of Current Sense Resistors

    What Decoupling Capacitor Value To Use And Where To Place Them

    How to Measure Rated Current on Power Inductors

    LTspice Simulation of a Spark-Gap Circuit Protection Surge Arrester

    Approximate Inductor Design Using Two Alternative Cores

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

What is X2Y Bypass Capacitor and What is it Good For?

27.1.2023
Reading Time: 4 mins read
0 0
0
SHARES
263
VIEWS

This blog article by Knowles Precision Devices introduces basic facts of X2Y bypass capacitor with special X2Y electrodes layout, how it works and what is its performance.

X2Y® technology, which was originally developed by X2Y Attenuators, LLC, is based on a proprietary electrode arrangement embedded in passive components that can be manufactured using a variety of dielectrics.

RelatedPosts

Exploring the Benefits of High-Performance MLCC Capacitors for Aerospace and Defense

Flying Capacitors Explained

Filter Shape Factor and Selectivity

Using this innovative technology, Knowles Precision Devices manufactures high-performance multi-layer ceramic capacitors (MLCCs) that we then use to create a variety of off-the-shelf and custom bypass and noise decoupling capacitors and electromagnetic interference (EMI) filters. Let’s look at how building these components with X2Y is different than using a traditional ceramic MLCC and the resulting benefits.

Using X2Y for Bypass, Decoupling, and EMI Filtering Components

While a traditional bypass capacitor is designed to have stacked opposing electrode layers inside, a bypass capacitor constructed with X2Y incorporates a third set of shield electrode layers. This design effectively surrounds each existing electrode within the stack of the two-terminal capacitor, creating a three-node capacitive circuit as shown in Figure 1. With this design, there are two additional external side terminations, resulting in a four-terminal device.

Figure 1. A comparison of the construction of a traditional multi-layer bypass capacitor (left) versus one built using X2Y.; source: X2Y

When using X2Y for bypass or decoupling capacitors, you can achieve ultra-low inductance that provides broadband high-frequency bypassing, which increases circuit performance. Additionally, since this construction requires fewer passive components, system costs are also reduced.

Looking specifically at EMI filters, it’s important to note that filters using an X2Y design are manufactured in the same way as a conventional MLCC but have a special internal architecture that results in ultra-low equivalent series inductance (ESL) through opposing current flows in adjacent parallel plates. These EMI filters are not feedthrough devices, but act as bypass filters, which means they are not current limited since the only signal passing through the chip is the filtered noise to ground. These filters are ideal for twin-line applications such as motors and amplifier inputs, or twisted pair (balanced line) applications where they are fitted between the lines with the center terminal taken to ground. 

Additionally, using X2Y for EMI filtering does not add DC resistance, and since two capacitors can be used in a single package, issues with aging, voltage, and temperature variations are eliminated. This means EMI filters constructed with X2Y can offer a dramatic reduction in conducted and radiated noise to meet electro-magnetic compatibility requirements.

Comparing Conventional MLCC Configurations to an X2Y Design

To illustrate some of the benefits described above, let’s look at an amplifier decoupling test performed by X2Y Attenuators, LLC. In the test configurations shown in Figure 2, the company was comparing the noise rejection power of the bypass network of four MLCCs versus the capabilities of just one bypass capacitor designed using X2Y.

Figure 2. The configuration on the left uses a single X2Y bypass capacitor while the configuration on the right is a conventional four MLCC setup. 
Figure 3. The actual PCB setups used in this amplifier decoupling test.

As shown in the image of the PCBs used in the experiment in Figure 3, parasitics were equalized and the ground attachment and capacitor setbacks were matched between set-ups.

This test showed that building a conventional filter using two capacitor values per power pin, four capacitors total, resulted in 150 percent the voltage noise versus using just one X2Y capacitor for both power pins. And since a single X2Y ceramic capacitor can be used instead of four conventional MLCCs, circuit designers can drastically reduce their bill of materials (BOM) as well as the size, weight, and cost of the devices they are designing. 

Overall, X2Y is an exciting, forward-thinking ceramic capacitor technology. Knowles Precision Devices is not only one of the few manufacturers developing components using this technology, but we also have expert engineers on our team to support designs using X2Y that will help you further reduce the size, weight, and cost of your designs.

Further Background Reference Read: Introduction to EMI Filtering

Source: Knowles Precision Devices

Related Posts

Inductors

Practical LLC Transformer Design Methodology

31.3.2023
1
Oscillators

Practical Measurement of Crystal Circuits

31.3.2023
3
Market & Supply Chain

March 2023 ECIA NA Electronic Components Sales Misses Expectations

31.3.2023
2

Upcoming Events

Apr 3
April 3 @ 12:00 - April 4 @ 14:00 CEST

Microelectronic Packaging Failure Modes and Analysis

Apr 5
11:00 - 12:00 CEST

Plugging – Filling – Tenting; WE PCB Webinar

Apr 6
April 6 @ 12:00 - April 7 @ 14:00 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

View Calendar

Popular Posts

  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • Leakage Current Characteristics of Capacitors

    0 shares
    Share 0 Tweet 0
  • Capacitor Losses (ESR, IMP, DF, Q), Series or Parallel Eq. Circuit ?

    0 shares
    Share 0 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

PCNS Call for Papers !

Archive

2022
2021
2020
2019
2018
2017

Symposium

Passive Components Networking Symposium

Passives e-Learning

Knowledge Blog

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.