Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Researchers Presents High-Performance Carbon-Based Supercapacitors

    Hirose Launches World’s Lowest Profile and Narrowest Pitch FPC Connector

    Modelithics Announces v25.5 of the COMPLETE+3D Library for Ansys HFSS

    PCNS 2025 Final Program Announced!

    DigiKey Expands Inventory with Over 32,000 Stocking NPIs in Q2 2025

    YAGEO Offers High-Performance Diplexers for Dual-Band Wi-Fi 6E/7Integration

    European Components Distribution (DMASS) Faces Continued Decline in Q2 2025

    TDK Announced Wide Frequency Automotive Wirewound POC Inductors

    Bourns Released Rugged, High-Power TO-247 Thick Film Resistor

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Researchers Presents High-Performance Carbon-Based Supercapacitors

    Hirose Launches World’s Lowest Profile and Narrowest Pitch FPC Connector

    Modelithics Announces v25.5 of the COMPLETE+3D Library for Ansys HFSS

    PCNS 2025 Final Program Announced!

    DigiKey Expands Inventory with Over 32,000 Stocking NPIs in Q2 2025

    YAGEO Offers High-Performance Diplexers for Dual-Band Wi-Fi 6E/7Integration

    European Components Distribution (DMASS) Faces Continued Decline in Q2 2025

    TDK Announced Wide Frequency Automotive Wirewound POC Inductors

    Bourns Released Rugged, High-Power TO-247 Thick Film Resistor

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

3-terminal Capacitor Benefits to Suppress EMI Noise

19.4.2024
Reading Time: 6 mins read
A A

This article is based on Murata application note on 3-terminal capacitor use to suppress EMI radiated emission noise and improve conducted immunity.

Noise-control techniques are becoming increasingly important due to high-speed operation of ICs and electrification of automobiles. This application note introduces examples of using the 3-terminal ceramic capacitor as a filter (feed-through connection) for radiated emission and conducted immunity.

RelatedPosts

Murata Releases In-vehicle Compact Crystal in 2016 Size

Murata Announces Mass Manufacturing of World’s First 0402 47µF MLCC

Murata Releases First High-Frequency XBAR Filter for Next-Gen Networks

Radiated Emission

In the recent years, the switching frequency of DC/DC converters has increased due to the demand for miniaturization of circuits, and their harmonic noise tend to exist up to high frequencies.
In addition, the resonance due to parasitic inductance and floating capacitance of IC and PCB generates high level noise at high frequency. As a countermeasure, this note introduces examples in which the 3-terminal capacitor is used at output line or input line of a DC/DC converter.

For information on “through” and “non-through” connection, please see Murata paper: Basics of Noise CountermeasuresLesson 11 Notes on the Use of Chip 3-Terminal Capacitors | Murata Manufacturing Articles (murata.com)

The 3-terminal capacitor (Through connection) at DC/DC converter Output-line

We compared noise reduction effect of a standard 2-terminal MLCC ceramic capacitor and a 3-terminal low-ESL capacitor. First, we show the frequency characteristics of the two insertion losses in Fig.1. It can be seen that the 3 terminal capacitor has an excellent filter effect of about 20dB in the region of 10 MHz or more.

The DC/DC output voltage may have ripples and sharp spike noise as shown in the Fig. 2. below. Then, a 3-terminal capacitor instead of a 2-terminal MLCC can greatly reduce spike noise.

Fig.1. Insertion loss frequency characteristics for 2-terminal and 3-terminal ceramic capacitors
Fig.2. DC/DC convertor output voltage waveformfor 2-terminal and 3-terminal ceramic capacitors

Next, the radiation noise measurement result (CISPR32/3m) is shown below in Fig.4. By using the 3-terminal low-ESL capacitor, we were able to confirm that the noise reduction was more than 15dB compared with the 2-terminal MLCC.

Fig.3. 2-terminal MLCC vs 3-terminal capacitor circuit schematic
Fig.4. Radiated Emission EMI Noise Level (CISPR32 3m) 2-terminal vs 3-terminal capacitor comparison

The 3-terminal capacitor (Through connection) at DC/DC converter Input-line. (for in-vehicle devices)

DC/DC converters generate large noise not only at output line but also at input line. We arranged “No Filter”, “pi-type filter” and “3-terminal capacitor” at the input power line of the DC/DC used in the on-board equipment, and compared the radiated emission noise of these 3 patterns. As you can see the results in Fig. 5. and 6., 1 element of a 3-terminal capacitor has the same noise reduction effect as a π-type filter (3 elements), which reduces the number of components.

Fig. 5. pi-type filter vs 3-terminal capacitor
Fig. 6. pi-type filter vs 3-terminal capacitor Radiated Emission EMI Noise Level (CISPR25 ALSE) comparison

Conducted Immunity

3-terminal capacitors can also be used for conducted immunity. In the DPI test (IEC62132-4) which is the immunity evaluation test for semiconductors, we used the 3-terminal capacitor (through connection) at the MCU power line as shown in Fig.7. By using the 3-terminal capacitor, NG results improved to OK.

Fig.7. DPI test condition for conducted immunity measurement
Fig. 8. Conducted immunity measurement DPI Test Results

Conclusion

This article introduced the noise reduction effect of a 3-terminal capacitor (feed-through connection) featuring low ESL.

We presented the results of radiation emission and conduction immunity tests of DC/DC converters. In addition, it can be used to prevent conducted emissions and self-poisoning in electronic devices.
It can be used not only to add 3-terminal capacitors to electronic circuits, but also to replace 2-terminal MLCCs and filters currently in use.

Please consider using a 3-terminal capacitor as one of the solutions for noise control.

Related

Source: Murata

Recent Posts

Researchers Presents High-Performance Carbon-Based Supercapacitors

1.8.2025
6

Modelithics Announces v25.5 of the COMPLETE+3D Library for Ansys HFSS

1.8.2025
2

PCNS 2025 Final Program Announced!

31.7.2025
30

European Components Distribution (DMASS) Faces Continued Decline in Q2 2025

30.7.2025
33

Switched Capacitor Converter Explained

28.7.2025
22

Samsung Releases 1000V 1812 X7R 100nF MLCC for Electric Vehicles

28.7.2025
21

Samsung Electro-Mechanics Releases Molded MLCC Capacitors

28.7.2025
62

Researchers Demonstrated 200C Polymer Film Dielectric

28.7.2025
14

Researchers Demonstrated Zinc-Ion Based Photo-Supercapacitor

28.7.2025
11
Comparative display of a grain size and domain structure; b free energy; c P-E loops after high-entropy ceramics (HECs) and PGS design. source: Nature Communications  ISSN 2041-1723

Researchers Propose Novel MLCC Dielectric Design to Increase Energy Storage Capacity

24.7.2025
43

Upcoming Events

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Nov 4
November 4 @ 12:00 - November 6 @ 14:15 EST

Wirebond Materials, Processes, Reliability and Testing

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version