• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

3D Bundle-like Carbon Nanotubes Provide Fast Charge Supercapacitor Electrodes

14.1.2022

Würth Elektronik Extends its MagI³C VDMM Power Module

5.7.2022

Sumida Releases New SMD Metal Composite Inductors for Automotive

1.7.2022

Bourns Releases High-Speed Fuse to Protect Power Semiconductors

1.7.2022

Basics of PCB production, Part 1; WE Webinar

30.6.2022
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Würth Elektronik Extends its MagI³C VDMM Power Module

    Sumida Releases New SMD Metal Composite Inductors for Automotive

    Bourns Releases High-Speed Fuse to Protect Power Semiconductors

    KEMET Introduces 1kV Automotive Grade Common Mode Choke

    Smoltek Signs MoU for its CNF-MIM Capacitor Manufacturing Joint Venture

    Vishay Introduced Leadless NTC Thermistor Dies with Versatile Mounting Options

    CAP-XX Expanding its Supercapacitor Portfolio by Lithium-Ion Capacitors

    NA Component Sales Continue to Show Positive Growth

    Bourns Releases Semi-shielded Power Inductors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Basics of PCB production, Part 1; WE Webinar

    Effects of Harsh Environmental Conditions on Film Capacitors

    Common-mode Choke Parameters Explained; WE Webinar

    Ceramic Capacitors Loss Modelling under High DC Bias Voltage and High Current Stress

    MLCC Case Size Impact to Parameters

    NTC Thermistor in Fire Alarm Application LTSpice Simulation

    MLCC Ageing; Samsung Video

    Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

    Coverlay – More than a Flexible Soldermask Substitute; WE Webinar

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Würth Elektronik Extends its MagI³C VDMM Power Module

    Sumida Releases New SMD Metal Composite Inductors for Automotive

    Bourns Releases High-Speed Fuse to Protect Power Semiconductors

    KEMET Introduces 1kV Automotive Grade Common Mode Choke

    Smoltek Signs MoU for its CNF-MIM Capacitor Manufacturing Joint Venture

    Vishay Introduced Leadless NTC Thermistor Dies with Versatile Mounting Options

    CAP-XX Expanding its Supercapacitor Portfolio by Lithium-Ion Capacitors

    NA Component Sales Continue to Show Positive Growth

    Bourns Releases Semi-shielded Power Inductors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Basics of PCB production, Part 1; WE Webinar

    Effects of Harsh Environmental Conditions on Film Capacitors

    Common-mode Choke Parameters Explained; WE Webinar

    Ceramic Capacitors Loss Modelling under High DC Bias Voltage and High Current Stress

    MLCC Case Size Impact to Parameters

    NTC Thermistor in Fire Alarm Application LTSpice Simulation

    MLCC Ageing; Samsung Video

    Vishay NTC Thermistor LTspice Simulation for PID Optimization; Vishay Webinar

    Coverlay – More than a Flexible Soldermask Substitute; WE Webinar

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

3D Bundle-like Carbon Nanotubes Provide Fast Charge Supercapacitor Electrodes

14.1.2022
Reading Time: 3 mins read
0 0
0
SHARES
65
VIEWS

Research undertaken by Hsu Hao-Lin et. al. from Green Energy Technology Research Center, Kun Shan University, Taiwan propose environmentally friendly and low-cost synthesis route of active composite electrode materials for supercapacitor application comprising of 3D bundle-type carbon nanotubes (BCNTs) with metallic alloys.

They are re-proposing the synthesized BCNTs growth mechanisms in preparing working electrodes using a two stage process with a two-component intermetallic alloy of Ni and Mg (NMA). First, the metals are mixed at a low temperature with a liquid ethylene glycol (EG) medium, followed by the BCNTs being synthesized by catalytic thermal chemical vapor deposition (CVD) which decomposes and drives off the hydrocarbons. In the second processing step, an additional precursor, in the form of molybdenum chloride, is introduced to blend with the NMAs resulting in fast charge transfer between electrode and electrolyte.

RelatedPosts

Electroninks Releases Gold and Platinum Particle-Free Conductive Inks

Peak Nano Installs Production Line for Innovative Capacitor Films

Electrical Properties Study of SMD Resistor Integrated Metallic Yarn for Smart Textiles

The resulting BCNT structures were observed using a field-emission scanning electron microscope (FESEM) and high-resolution transmission electron microscopy (HRTEM) to reveal their structural and surface morphologies, allowing their SSA to be ascertained.

Highlights

  • Three-dimensional BCNT composite is the first study of supercapacitor electrode application for publication.
  • BCNT electrodes achieve a maximum capacitance of 1,560 F/g
  • BCNT electrodes exhibit an energy density of 195 Wh/kg at a power density of 0.21 kW/kg
  • BCNT electrodes perform specific capacitance retention (128.2%) after 2,000 continuous cyclic voltammetry cycles

Abstract

Bundle-type mutil-walled carbon nanotubes (MWCNTs) composite electrode is the first investigation and publication for the supercapacitor application. According to the thermogravimetric analysis results, as-synthesized BCNTs are considered as the electrode materials for supercapacitors and electrochemical double-layer capacitor in this study. The Brunauer–Emmett–Teller specific surface area of as-prepared bundled carbon nanotubes (BCNTs) is 95.29 m2/g given to a type III isotherm and H3 hysteresis loops.

Slow scanning rates promote and enhance to achieve high Cb because of the superior conductivity of CNT bundles and one side close-layered Ni/Mg/Mo alloy inside the BCNT-based electrode and facile electron diffusivity between electrolyte and electrode. The specific capacitance Cs (1,560 F/g) is nearly equal to the maximum specific capacitance, which the BCNT-based composite electrode can actually be able to charge or fill in. The maximum energy density value is 195 Wh/kg with corresponding power density values of 0.21 kW/kg. Furthermore, the active 3D BCNTs material fabricated electrode enhances to contact the electrolyte directly and decreases the ion diffusion limitation.

Electrochemical impedance spectroscopy spectrum summarized as the low-frequency area controls by mass transfer limitation, and the high-frequency area dominates by charge transfer of kinetic control. After 2,000 consecutive cyclic voltammetry sacnings and galvanostatic charge-discharge cycles at a current density of 1.67 A/g performs, the specific capacitance retentions of 3D BCNTs electrodes achieved 128.2 and 77.3%, respectively. Three-dimensional BCNT composite electrodes exhibit good conductivity and low charge transfer resistance, which is beneficial to fast charge transfer between the BCNTs electrode materials and electrolytes.

Approximate manufacturing and electrochemical experimental processes.; source: Hao-Lin et. al.

Reference

Hsu Hao-Lin et. al. (2021) Three-dimensional bundle-like multiwalled carbon nanotubes composite for supercapacitor electrode application Materials Today Chemistry 22 100569 https://doi.org/10.1016/j.mtchem.2021.100569

Related Posts

Capacitors

Smoltek Signs MoU for its CNF-MIM Capacitor Manufacturing Joint Venture

30.6.2022
23
Capacitors

CAP-XX Expanding its Supercapacitor Portfolio by Lithium-Ion Capacitors

29.6.2022
72
Aerospace & Defence

NA Component Sales Continue to Show Positive Growth

29.6.2022
73

Popular Posts

  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0

Newsletter Subscription

 

Archive

2022
2021
2020
2019
2018
2017

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.