Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Vishay Releases Industry First Automotive SMD Y1 Safety Ceramic Capacitors

    Researchers Enhanced 2D Ferromagnets Performance

    Bourns Releases Two High Current Common Mode Choke Models

    Electronics Weekly Announcing Finalists for Elektra Awards 2025

    Exxelia Exhibit at Electronica India September 17–19, 2025

    Würth Elektronik Announces 2025 Digital WE Days Virtual Conference

    VINATech Unveils Hybrid Energy Storage System to Revolutionize Grid Stability and Power Delivery

    SCHURTER Releases High Performance EV-Fuse

    Panasonic Industry to Double Production of MEGTRON PCB Materials

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Vishay Releases Industry First Automotive SMD Y1 Safety Ceramic Capacitors

    Researchers Enhanced 2D Ferromagnets Performance

    Bourns Releases Two High Current Common Mode Choke Models

    Electronics Weekly Announcing Finalists for Elektra Awards 2025

    Exxelia Exhibit at Electronica India September 17–19, 2025

    Würth Elektronik Announces 2025 Digital WE Days Virtual Conference

    VINATech Unveils Hybrid Energy Storage System to Revolutionize Grid Stability and Power Delivery

    SCHURTER Releases High Performance EV-Fuse

    Panasonic Industry to Double Production of MEGTRON PCB Materials

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

ALD Announces a Six-Channel Printed Circuit Board that Automatically Balances a Broad Range of Supercapacitors

27.2.2019
Reading Time: 2 mins read
A A

Source: Advanced Linear Devices Inc. news

The board offers leakage current balancing for 12 volt (V) systems used in automotive, gap power and remote monitoring applications

RelatedPosts

Vishay Releases Industry First Automotive SMD Y1 Safety Ceramic Capacitors

Researchers Enhanced 2D Ferromagnets Performance

Bourns Releases Two High Current Common Mode Choke Models

SUNNYVALE, Calif. November 14, 2018 – Advanced Linear Devices Inc. (ALD), a design innovation leader in technology, today announced its six-channel supercapacitor automatic balancing (SAB) PCB. The SABMB6 can balance any size of supercapacitor with zero added power dissipation. Each PCB can balance up to six supercapacitors stacked in a series, ranging in size from six to hundreds of supercapacitors with capacities from 0.1 to 3,000 Farads (F) in voltages of 12 and higher. The ultra-low power dissipation enables energy-efficient supercapacitor balancing, which is ideal for applications that require low-loss energy harvesting, long life, and battery backup or replacement.

“Rather than focusing on the DC voltage balancing, the ALD method manages leakage current and is independent of the cell capacitance,” said Robert Chao, President and founder of ALD, Inc. “Leakage current can be affected by many parameters in a supercapacitor, such as operating temperature, aging, initial leakage current input voltage, and the operating bias voltage.”

Targeting 12V battery applications, where six 2V-cells are increasingly used, developers are often required to stack supercapacitors in series or in parallel. The SABMB6 allows up to six connected cells, reducing the risk of a short circuit and battery failure.

Each six-channel PCB is populated with three ALD9100XX SAB MOSFETs that automatically balance the leakage and voltage of each supercapacitor cell connected in series. Optional reverse-biased external clamping power diodes (Schottky rectifiers) can be installed when necessary across each SAB MOSFET to clamp surge current transients. ALD also offers a blank SABMB6 PCB for customers to insert their own SAB MOSFETs.

The product family joins ALD’s existing two- and four-channel SAB PCBs, the SABMB2 and SABMB16, and offers designers lower bill-of-material costs. The boards can be cascaded with mix-and-match configurability to balance multiple series stacks, i.e. combining ALD’s two-, four-, and six-channel PCBs as required. Like other members of the product family, it is a simple, out-of-the-box, plug-and-play PCB solution reducing time-to-market for existing and emerging applications. No electrical engineering expertise or board design is required; the user has only to mount the PCB and wire the appropriate connections from the SABMB6 board to the respective supercapacitor nodes.

The compact SABMB6 PCB is made from RoHS-compliant FR4 material, and measures 0.6 × 1.6 inch (15.24 × 40.64 mm). It is rated for operation at the industrial temperature range of -40 to +85°C. The product can be used for evaluation, prototyping, or production. The product family is in stock at Mouser and Digikey. Prices range from $12.20 to $38.97 each.

Related

Recent Posts

Vishay Releases Industry First Automotive SMD Y1 Safety Ceramic Capacitors

17.9.2025
2

Bourns Releases Two High Current Common Mode Choke Models

16.9.2025
8

Electronics Weekly Announcing Finalists for Elektra Awards 2025

16.9.2025
6

Exxelia Exhibit at Electronica India September 17–19, 2025

15.9.2025
28

Würth Elektronik Announces 2025 Digital WE Days Virtual Conference

15.9.2025
11

VINATech Unveils Hybrid Energy Storage System to Revolutionize Grid Stability and Power Delivery

15.9.2025
17

SCHURTER Releases High Performance EV-Fuse

15.9.2025
6

5th PCNS Awards Outstanding Passive Component Papers

17.9.2025
56

TDK Releases Ultra-small PFC Capacitors

10.9.2025
35

KYOCERA AVX Releases Novel Mini BME Stacked Ceramic Capacitors

10.9.2025
28

Upcoming Events

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Core Materials, Permeability and Their Losses

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version