Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

    Vishay Expanded Inductor Portfolio With More Than 2000 Stock Items 

    Paumanok Releases Capacitor Foils Market Report 2025-2030

    Modelithics Welcomes CapV as a Sponsoring MVP

    Wk 40 Electronics Supply Chain Digest

    Benefits of Tantalum Powder Stress–Strain Curve Evaluation vs Conventional Wet Test

    Electrolyte Selection and Performance in Supercapacitors

    Connector PCB Design Challenges

    Researchers Demonstrated High Energy Ceramic Capacitors Stable in Wide Temperature Range

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

    Vishay Expanded Inductor Portfolio With More Than 2000 Stock Items 

    Paumanok Releases Capacitor Foils Market Report 2025-2030

    Modelithics Welcomes CapV as a Sponsoring MVP

    Wk 40 Electronics Supply Chain Digest

    Benefits of Tantalum Powder Stress–Strain Curve Evaluation vs Conventional Wet Test

    Electrolyte Selection and Performance in Supercapacitors

    Connector PCB Design Challenges

    Researchers Demonstrated High Energy Ceramic Capacitors Stable in Wide Temperature Range

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

An Introduction to Insertion Loss and Filter Capacitor Performance

1.10.2025
Reading Time: 5 mins read
A A
Insertion Loss chart for different filter topology; source: S.Nelson, Medium

Insertion Loss chart for different filter topology; source: S.Nelson, Medium

Capacitors are used in both analog and digital circuits to remove unwanted signals. The filtering performance of a capacitor or filtering circuit is commonly described in terms of insertion loss. Some of the factors that significantly affect the insertion loss performance of a filtering circuit include configuration of the filtering elements, impedance, and load current. 

Filtering EMI in Circuits

Electrical disturbances, both natural and man-made, can significantly affect the performance of an electronic circuit. These unwanted signals are collectively known as electromagnetic interference (EMI). Filtering circuits are used in most analog and digital circuits to eliminate these unwanted signals. Some of the most common sources of these signals include lighting, storms, precipitation, power lines, motors, ignition systems, radar transmitters, power amplifiers, computer clocks and cosmic sources.

RelatedPosts

Improving Common Mode Noise Reduction while Decreasing BOM

AC Line Filter Calculation, Design and LT Spice Simulation

Filter Shape Factor and Selectivity

The configuration of elements in a filtering circuit significantly determines its filtering performance. The simplest filtering configuration, commonly known as C filter, consists of a single feed-through capacitor. The performance of a filtering circuit is improved by using a combination of capacitive and inductive elements. Some of the most common configurations include L-C, T, and Pi constructions. Increasing the number of capacitive and inductive elements helps to improve the performance of a filtering circuit.

Insertion loss characteristics of capacitors and circuits

One of the key factors to consider when selecting a capacitor for EMI filtering is its insertion loss characteristics. This parameter is commonly defined as the ratio of voltage before and after a filter is added. In a basic circuit, the value is obtained by dividing the values of voltage obtained before and after a filtering component is inserted. This parameter greatly determines the level of attenuation of a filtering circuit. The insertion loss performance of a circuit or a component is commonly given in decibels.

Ordinary capacitors do not have good insertion loss performance characteristics. The presence of inherent parasitic ESL self-inductance reduces their ability to ground unwanted electrical disturbances. This residual inductance increases with an increase in the length of electrodes.

In addition, the narrower the electrode is, the higher the amount of inductance. To reduce this unwanted inductance and improve the filtering performance of capacitors, it is necessary to modify the architecture of these passive components. Changing the architecture of a capacitor and adding a third terminal helps to minimize residual inductance. Feed-through capacitors, a special class of capacitive elements that are widely used for filtering applications, are based on this modified architecture.

In capacitors with two terminals, the residual inductance is higher because the leads of a component behave as inductors. Introducing a third terminal helps to reduce the inductance component in series with the capacitive component. This significantly improves the insertion loss characteristics of a capacitor. By reducing this residual inductance, the self-resonance frequency of a filtering capacitor is increased.

Feed-through capacitors are specially designed to provide exceptional insertion loss performance. These capacitors are widely used for EMI suppression and bypassing applications. The most common designs of ceramic feed-through capacitors used in today’s filtering circuits are discoidal and tubular capacitors. Plastic film feed-through capacitors are commonly used in applications that demand high reliability.

Insertion loss variation with frequency

The insertion loss characteristics of ideal and actual capacitors are slightly different. The insertion loss of an ideal capacitor increases with an increase in frequency. In comparison, the insertion loss of an actual component increases with frequency up to a certain level. This level is known as self-resonance frequency. After this level, the insertion loss of an actual component decreases with an increase in frequency.

At frequencies higher than the resonance frequency, the insertion loss performance of a filter does not change if the residual inductance is maintained constant. Increasing or decreasing the capacitance of a component under these conditions does not affect the insertion loss. This means that a capacitor with a high self-resonance frequency is required for noise suppression at high frequencies. Components with small residual inductances should be used for such applications.

Factors that determine insertion loss performance

The insertion loss performance of a circuit or a component is determined by many factors; some of the main factors are electrical configuration, load current, source impedance, load impedance, earthing impedance, characteristics of the dielectric materials of components, and shielding integrity.

Configuration of components

Although single elements can be used to remove unwanted signals, most filtering circuits use a combination of capacitive and inductive components. The choice of configuration is mostly determined by the desired insertion loss performance. The most common configurations include C, C-L, L-C, Pi and T. See figure below:

most common use of filter capacitors in filtering circuit types

Theoretically speaking, a single element filter yields an insertion loss of 20dB per decade while a two-element filter yields 40dB per decade. Filtering circuits with three or more elements can yield even better insertion loss performance. 

Filtering circuits with multiple capacitive and inductive elements are used in circuits where high degrees of filtering performance are required. The actual insertion loss performance is determined by the actual characteristics of components used. This information is usually provided in data sheets. It is important to consider your source and load impedances when selecting a configuration for your filtering circuit.

Load Current

The effect of load current on insertion loss is significantly determined by the properties of the filtering elements used. For filtering circuits with inductive elements, the insertion loss can drop if ferrite inductors are used. The degree of this effect depends on the specific characteristics of the ferrite material.

Circuit impedances

The insertion loss performance of a filtering circuit is greatly dependent on source and load impedances. This performance is usually optimized by choosing a suitable configuration of capacitive and inductive elements.

Conclusion

Capacitors are used in both analog and digital circuits to remove unwanted signals. The filtering performance of a capacitor or filtering circuit is commonly described in terms of insertion loss. Some of the factors that significantly affect the insertion loss performance of a filtering circuit include configuration of the filtering elements, impedance, and load current.

Conventional capacitors do not yield a good insertion loss performance, and three-terminal components are used when better performance is required. For optimum insertion loss performance, filtering circuits consisting of multiple capacitive and inductive elements are used.

Related

Recent Posts

Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

8.10.2025
1

Vishay Expanded Inductor Portfolio With More Than 2000 Stock Items 

8.10.2025
6

Paumanok Releases Capacitor Foils Market Report 2025-2030

7.10.2025
8

Modelithics Welcomes CapV as a Sponsoring MVP

7.10.2025
2

Benefits of Tantalum Powder Stress–Strain Curve Evaluation vs Conventional Wet Test

3.10.2025
20

Electrolyte Selection and Performance in Supercapacitors

3.10.2025
16

Connector PCB Design Challenges

3.10.2025
20

Researchers Demonstrated High Energy Ceramic Capacitors Stable in Wide Temperature Range

2.10.2025
24

Stackpole Offers High Voltage Plate Resistors up to 40KV

2.10.2025
18

How to Manage Supercapacitors Leakage Current and Self Discharge 

1.10.2025
39

Upcoming Events

Oct 14
16:00 - 17:00 CEST

Smart Sensors, Smarter AI: Building Reliable Edge Systems

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Oct 28
8:00 - 15:00 CET

Power Up Your Design: SN6507 and the Ready-to-Use Development Kit

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version