Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Unveils Metal Powder Core High Current Low DCR Shielded Power Inductor

    Influence of Tantalum Capacitor Pellets Size on Stability During Oxide Film Formation

    Modelithics Release Discrete Components Optimization Article for RF/Microwave Designers

    Samsung Extends Capacitance of MLCC 0805 X7T 250V to 100nF

    Samtec Releases 800-Position High-Performance Array Connectors  

    DigiKey Announces Back to School Giveaway to Empower Tomorrow’s Innovators

    Ripple Steering in Coupled Inductors: SEPIC Case

    TDK Releases Low Loss Thin-Film Inductors for AI Data Centers

    Samsung Releases Ultra–High-Capacitance 4.7uF 2.5V MLCC in 0201 for AI GPU

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Unveils Metal Powder Core High Current Low DCR Shielded Power Inductor

    Influence of Tantalum Capacitor Pellets Size on Stability During Oxide Film Formation

    Modelithics Release Discrete Components Optimization Article for RF/Microwave Designers

    Samsung Extends Capacitance of MLCC 0805 X7T 250V to 100nF

    Samtec Releases 800-Position High-Performance Array Connectors  

    DigiKey Announces Back to School Giveaway to Empower Tomorrow’s Innovators

    Ripple Steering in Coupled Inductors: SEPIC Case

    TDK Releases Low Loss Thin-Film Inductors for AI Data Centers

    Samsung Releases Ultra–High-Capacitance 4.7uF 2.5V MLCC in 0201 for AI GPU

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Bourns Releases High Isolation Automotive Flyback Transformer for High Power Density Circuits

13.12.2024
Reading Time: 3 mins read
A A

New transformer from Bourns achieves exceptional isolation and creepage/clearance distances in a compact component footprint.

Bourns, Inc., a leading manufacturer and supplier of electronic components, announced a new addition to its automotive grade, AEC-Q200 compliant flyback transformer line.

RelatedPosts

Bourns Unveils Metal Powder Core High Current Low DCR Shielded Power Inductor

Bourns Releases High Power High Ripple Chokes

Bourns Unveils High Reliability Compact Micro Encoders

The Model HVMA03F40C-ST10S flyback transformer is specifically designed to support high power density and greater efficiency in a compact form factor in flyback converter designs.

Understanding the ongoing power-density support requirements of today’s automotive, industrial, and energy storage designs, Bourns continues to release families of high isolation flyback and gate drive transformers with expanded capabilities.

The Model HVMA transformer’s long list of features makes it a superior solution for electric vehicles, transistor gate drives and high voltage battery management systems, as well as for isolated power across separate voltage systems in hybrid vehicles. It can also capably support high frequency Silicon Carbide, IGBT and Gallium Nitride switching elements in wide bandgap designs.

Bourns offers proven engineering expertise in the development of advanced Magnetic architectures in smaller component sizes. This latest transformer meets IEC standards for isolation and creepage/clearance distance requirements with a state-of-the-art mechanical and electrical design that helps increase system performance and safety at the same time.

Offered in a 10 mm creepage surface mount package, the Model HVMA03F40C-ST10S gives designers up to 900 V working voltage with the capability to support new designs utilizing the existing platform or to help them streamline the design of new platforms. In addition, this 3-Watt flyback transformer features switching frequencies from 100 kHz to 400 kHz, and an operating temperature range of -40 °C to +155 °C.

The Bourns® Model HVMA03F40C-ST10S flyback transformer is available now and is RoHS and REACH compliant.

Features

  • 3 Watt flyback transformer
  • 100 to 400 kHz switching frequency
  • 900 V working voltage up to 5000 m
  • SMT transformer with 10 mm creepage
  • Basic insulation per IEC 61558-2 & IEC 60664-1
  • Operating temperature: -40 °C to +155 °C
  • AEC-Q200 compliant & automotive grade

Applications

  • Transistor gate drive power
  • Inverter circuits
  • Battery Management Systems
  • Motor drives
  • Power delivery

Related

Source: Bourns

Recent Posts

Bourns Unveils Metal Powder Core High Current Low DCR Shielded Power Inductor

29.8.2025
7

Modelithics Release Discrete Components Optimization Article for RF/Microwave Designers

28.8.2025
10

Samsung Extends Capacitance of MLCC 0805 X7T 250V to 100nF

28.8.2025
12

Ripple Steering in Coupled Inductors: SEPIC Case

27.8.2025
12

TDK Releases Low Loss Thin-Film Inductors for AI Data Centers

27.8.2025
10

SEPIC Converter with Coupled and Uncoupled Inductors

26.8.2025
21

Coupled Inductors in SEPIC versus Flyback Converters

26.8.2025
15

Vishay Releases High Current 3.3 V to 36 V ESD Protection Diodes

25.8.2025
15

TDK Extends SMT Gate Drive Transformers to 1000 V

20.8.2025
21

Stackpole Unveils Metal Element High Current Chip Jumpers

19.8.2025
41

Upcoming Events

Sep 3
15:30 - 17:30 CEST

How to Choose Your Magnetic Supplier

Sep 16
17:00 - 18:00 CEST

EMI Shielding Challenges

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Core Materials, Permeability and Their Losses

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version