Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Releases High Current Metal Alloy-based, Multilayer Power Chip Inductors

    Smiths Interconnect Extends Space-Qualified, High-Reliability Fixed Chip Attenuators 

    Samtec Expands Offering of Slim, High-Density HD Array Connectors

    Bourns Unveils High-Precision Wirewound Resistor with Long-Term Stability

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    Littelfuse Acquires Basler Electric Enhancing High-Growth Industrial Market

    DigiKey Grows Inventory with Over 31K New Stocking Parts in Q3 2025

    Murata Expands Automotive Metal Frame Y2/X1 Safety MLCC Capacitors to 500V

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Releases High Current Metal Alloy-based, Multilayer Power Chip Inductors

    Smiths Interconnect Extends Space-Qualified, High-Reliability Fixed Chip Attenuators 

    Samtec Expands Offering of Slim, High-Density HD Array Connectors

    Bourns Unveils High-Precision Wirewound Resistor with Long-Term Stability

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    Littelfuse Acquires Basler Electric Enhancing High-Growth Industrial Market

    DigiKey Grows Inventory with Over 31K New Stocking Parts in Q3 2025

    Murata Expands Automotive Metal Frame Y2/X1 Safety MLCC Capacitors to 500V

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Cable Supercapacitors in Microgrids and Renewable Applications

2.8.2024
Reading Time: 4 mins read
A A

Capacitech Energy is providing innovative solutions in form of Powerlink cable supercapacitors designed to meet the demands of microgrids and enable full utilization renewable energy sources.

As the world increasingly shifts toward renewable energy, the need for efficient and reliable energy storage solutions becomes more critical.

RelatedPosts

Capacitech PowerLink: High Power Cable Supercapacitor Energy Storage for Space Constrained Applications

Supercapacitor Cables Enable Better Batteries

Cable-Based Supercapacitors Extend Life of AR/VR Headsets

Distributed energy resources (DER) are a growing trend, such as rooftop and community solar installations. DER are leading the charge towards a more sustainable future. However, the intermittent nature of these energy sources poses significant challenges. This is especially true as DER grow in prominence, making up a larger portion of the energy on the grid compared to traditional fossil fuel sources such as coal.

Enter supercapacitors—an innovative technology that offers rapid energy storage and release capabilities, making them ideal for microgrids and renewable applications.

Understanding Distributed Energy Sources

Distributed energy resources (DER) are decentralized, modular, and more flexible than traditional, centralized power generation. These sources include solar photovoltaic (PV) systems, wind turbines, and other renewable technologies. DER can operate independently or in conjunction with the main power grid, forming microgrids—small-scale power grids that can disconnect from the traditional grid to operate autonomously. The efficiency and reliability of microgrids heavily depend on advanced energy storage systems.

The Role of Supercapacitors in Microgrids

Supercapacitors are energy storage devices that store and release energy rapidly. Unlike batteries, supercapacitors are designed to feature a very low resistance and high power density, ideal for high power, rapid response applications that are imperative to the stability of the grid and microgrids. This fundamental difference endows supercapacitors with several advantages:

1. Rapid Response in both Charge and Discharge Directions: Supercapacitors can be charged and discharged much faster than batteries, making them ideal for applications requiring quick bursts of energy and in applications where a burst of energy needs to be absorbed.

Supercapacitors are the perfect solution for grid reliability and resilience. Microgrids experience short and abrupt losses in power, disturbances, and must handle large inductive loads (common in transformers, industrial equipment, etc.) connected to the microgrid in order to startup (known in the industry as a blackstart).

2. Long Lifespan: Supercapacitors can endure hundreds of thousands of charge-discharge cycles without significant degradation, providing a more durable solution for high power energy storage applications. Lower replacement and maintenance costs can be attributed to the supercapacitor’s long cycle life.

Supercapacitors in Renewable Energy Applications

Renewable energy sources are inherently variable. Solar power fluctuates with weather conditions and daylight hours, while wind power depends on wind speed and patterns. Supercapacitors can bridge the gap between energy supply and demand, ensuring a steady power output. Their rapid response time helps manage power fluctuations and maintain grid stability. Additionally, supercapacitors can store excess energy generated during peak production periods and release it when the supply drops, enhancing the yield, efficiency, and reliability of renewable energy systems.

For example, if a cloud were to pass over a solar array that does not have energy storage, the site would likely be taken offline. This is because utilities require sources to provide a consistent supply of energy to ensure they can respond to demands. To strengthen the reliability of the solar array, a supercapacitor energy storage system could be added to help ride through the few minutes of cloud cover and allow the utility to fully utilize its renewable sources.

The PowerLink Solution

Capacitech Energy is providing innovative solutions designed to meet the demands of microgrids and enable full utilization renewable energy sources. Our PowerLink products feature:

1. Versatility: The PowerLink is a physically flexible energy storage system, allowing it to be installed in places traditional energy storage cannot go. The PowerLink can be seamlessly integrated into various systems, providing a space-conscious way to improve performance and reduce costs associated with downtime.

2. Scalability: The PowerLink can be connected in series to increase voltage, or in parallel to increase the peak power capacity. This makes it easy to scale the product to meet diverse power requirements, making it suitable for both small-scale microgrids and larger renewable energy projects.

3. Efficiency: PowerLink utilizes supercapacitor technologies, meaning it offers high power density and rapid charge-discharge capabilities, crucial for balancing the intermittent nature of renewable energy sources. The PowerLink’s high efficiency is inherent from the low resistance of supercapacitors.

4. Durability: With a long operational lifespan, PowerLink ensures a sustainable and cost-effective energy storage solution with little to no replacements and maintenance required.

Capacitech Energy’s solutions not only enhance the performance and reliability of microgrids but also contribute to the broader adoption of renewable energy by addressing the storage and space challenges associated with it.

The transition to renewable energy is essential for a sustainable future, but it comes with its own set of challenges, particularly in energy storage and grid stability. Supercapacitors offer a promising solution, providing rapid and reliable energy storage for intermittent sources and variable loads. Our PowerLink products enable seamless integration into existing infrastructures and allow for an efficient utilization of available space. Contact us to learn more about how we can help in your distributed energy resource application!

Related

Source: Capacitech

Recent Posts

Samtec Expands Offering of Slim, High-Density HD Array Connectors

30.10.2025
9

Bourns Unveils High-Precision Wirewound Resistor with Long-Term Stability

30.10.2025
11

Capacitor Self-balancing in a Flying-Capacitor Buck Converter

30.10.2025
11

Murata Expands Automotive Metal Frame Y2/X1 Safety MLCC Capacitors to 500V

30.10.2025
18

Exxelia 4-Terminal Safety Capacitors Compliant with NF F 62-102 Railway Standard

27.10.2025
27

Samsung Releases Automotive Molded 2220 1kV C0G MLCC

23.10.2025
43

VINATech Offers Smallest 100µF Al-Hybrid Capacitor

23.10.2025
43

Vishay Unveils SMD 1200V PTC Thermistors in Compact Size

23.10.2025
11

Bourns Unveils Automotive 3 Watt Gate Driver Transformer

22.10.2025
9

Murata Integrates Component Models into Cadence EDA Tools

21.10.2025
48

Upcoming Events

Nov 4
10:00 - 11:00 PST

Design and Stability Analysis of GaN Power Amplifiers using Advanced Simulation Tools

Nov 4
November 4 @ 12:00 - November 6 @ 14:15 EST

Wirebond Materials, Processes, Reliability and Testing

Nov 6
14:30 - 16:00 CET

Self-healing polymer materials for the next generation of high-temperature power capacitors

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Flying Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version