Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Power Electronics Tools for Passives and Magnetic Designs

    Modelithics Releases Component Model Library for SIMULIA CST Studio Suite

    Exxelia Publishes Micropen White Papers for Printed Electronics

    Stackpole Releases AlN High‑Power Thick Film Chip Resistors

    Samsung Q4 2025 Results: MLCC focus for AI, Server and Automotive

    Würth Elektronik Developed a Custom Transformer for Active Hand Orthosis

    Wk 4 Electronics Supply Chain Digest

    Capacitor Technology Dossier

    ROHM Extends 2012 Shunt Resistors Power Rating up to 1.25 W

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Power Electronics Tools for Passives and Magnetic Designs

    Modelithics Releases Component Model Library for SIMULIA CST Studio Suite

    Exxelia Publishes Micropen White Papers for Printed Electronics

    Stackpole Releases AlN High‑Power Thick Film Chip Resistors

    Samsung Q4 2025 Results: MLCC focus for AI, Server and Automotive

    Würth Elektronik Developed a Custom Transformer for Active Hand Orthosis

    Wk 4 Electronics Supply Chain Digest

    Capacitor Technology Dossier

    ROHM Extends 2012 Shunt Resistors Power Rating up to 1.25 W

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Hearing Aids Capacitors: Requirements and Technologies

28.6.2022
Reading Time: 3 mins read
A A
Hearing aids on white background

Hearing aids on white background

Hearing aid technology has improved tremendously in the last two decades. Although the early designs of hearing aids were analog, most of today’s devices are digital. Digital hearing aids use advanced digital technology and can implement various types of algorithms including noise reduction, feedback cancellation, and statistical data logging. Capacitors are fundamental components in both analog and digital hearing aids, and their characteristics greatly influence the overall performance of a product.  It is therefore crucial for circuit designers to ensure that they select the right capacitors when designing a hearing aid.

Key considerations in selecting capacitors for hearing aids

The circuit of a typical hearing aid device consists of a multi-stage sound amplification system, a microphone, a speaker, and a battery. Unlike general purpose electronic systems, hearing aid devices demand electronic components with special performance characteristics. One of the key considerations for these applications is the component size. The high volumetric efficiency and impressive performance characteristics of tantalum capacitors make them the preferred choice for today’s hearing aid devices.

RelatedPosts

Power Electronics Tools for Passives and Magnetic Designs

Modelithics Releases Component Model Library for SIMULIA CST Studio Suite

Exxelia Publishes Micropen White Papers for Printed Electronics

One of the main uses of capacitors in hearing devices is signal filtering. For this use, high capacitance values are required. Miniature surface mount tantalum capacitors are commonly used for this application because they offer high capacitance values and therefore higher volumetric efficiency.

Conformally coated versus molded surface mount tantalum capacitors

The two most common types of surface mount tantalum capacitors are conformally coated and molded types. In terms of properties, both types have nearly identical electrical characteristics. Conformally coated components were commonly used in the early designs of hearing aid devices. For the new generation of devices, most manufacturers are now using molded capacitors.

One of the main reasons why molded surface mount capacitors are preferred for use in modern hearing aids is that they offer impressive size uniformity and repeatability. In comparison, conformally coated components lack these characteristics, and this irregularity in size (although minor) makes them less than ideal for high volume pick and place manufacturing lines.

Molded construction technology produces miniature tantalum capacitors with flat and smooth tops. This flat top design allows manual and automatic machines to pick the components with ease. For components that do not have smooth and flat tops, such as conformally coated devices, it is common for machines to miss them when picking them during assembly.

Different capacitor manufacturing technologies also yield different solder reflow conditions. These solder reflow characteristics significantly determine the overall reliability of a component. For a molded tantalum capacitor, the terminations of the component are specially designed to absorb thermomechanical stresses caused by solder reflow. Unlike molded tantalum components, conformally coated tantalum capacitors exhibit poor solder reflow response, and are disposed to  thermomechanical stresses can result in the cracking and failure of the component.

After solder reflow, electronic assemblies are usually cleaned using special solutions. For surface mount assemblies with cracks caused by thermomechanical stresses, the cleaning solutions can penetrate through the cracks and significantly affect the electrical performance of a device. This contamination is common for assemblies with conformally coated capacitors. In comparison, the leads of molded capacitors are specially designed to prevent such defections. The high tolerance of these components to contamination during cleaning makes them a better choice for hearing aid devices.

Apart from hearing aid devices, tantalum capacitors are also widely used in other medical appliances such as handheld medical devices, heart pacemakers, and other life and non-life support medical devices. These components have impressively high reliability, and this makes them a suitable option for critical applications.Moreover, these passive components have a long service life.

Conclusion

Capacitors are used in both analog and digital hearing aids for filtering and other applications. Due to space constraints, these devices demand miniature components with high capacitances and high reliability.

The high volumetric efficiency, process compatibility, and impressive reliability of tantalum capacitors make them an unrivalled choice for hearing aids. The two most common types of surface mount tantalum capacitor technologies are conformally coated and molded tantalum capacitors.

As compared to conformally coated surface mount capacitors, molded components have a uniform and regular topology, high resistance to contamination, and impressive solder reflow properties. These characteristics make them an ideal choice for use in hearing aid devices and similar medical appliances.

Related

Recent Posts

Power Electronics Tools for Passives and Magnetic Designs

27.1.2026
1

Exxelia Publishes Micropen White Papers for Printed Electronics

26.1.2026
23

Samsung Q4 2025 Results: MLCC focus for AI, Server and Automotive

26.1.2026
31

Würth Elektronik Developed a Custom Transformer for Active Hand Orthosis

26.1.2026
23

Capacitor Technology Dossier

26.1.2026
58

Passive Components in Quantum Computing

22.1.2026
96

Miniaturization of MLCCs and Electrolytics, KAVX Tech Chat

21.1.2026
61

Researchers Demonstrated 32nm Aluminum Vacuum Gap Capacitor

20.1.2026
35

Conductive Polymer Capacitor Market and Design‑In Guide to 2035

20.1.2026
120

Upcoming Events

Jan 27
8:00 - 17:00 CET

COTS devices for Space Missions: Flexible and Cost-Efficient Up-Screening

Jan 27
16:00 - 17:00 CET

Simplifying Vehicle Development with Automotive Ethernet and Zonal Smart Switch Technologies

Feb 24
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How Metal Prices Are Driving Passive Component Price Hikes

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • Degradation of Capacitors and its Failure Mechanisms

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version